{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,23]],"date-time":"2024-07-23T13:52:01Z","timestamp":1721742721798},"reference-count":41,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"4","license":[{"start":{"date-parts":[[2019,4,1]],"date-time":"2019-04-01T00:00:00Z","timestamp":1554076800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,4,1]],"date-time":"2019-04-01T00:00:00Z","timestamp":1554076800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,4,1]],"date-time":"2019-04-01T00:00:00Z","timestamp":1554076800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61571140","61403085"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003453","name":"Natural Science Foundation of Guangdong Province","doi-asserted-by":"publisher","award":["2016A030313703"],"id":[{"id":"10.13039\/501100003453","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Science and Technology Planning Projection of Guangdong","award":["2016B030305002","2017B090901005","2017A010101016"]},{"name":"Science and Technology Program of Guangzhou","award":["201804010293","201604016084"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Instrum. Meas."],"published-print":{"date-parts":[[2019,4]]},"DOI":"10.1109\/tim.2018.2863438","type":"journal-article","created":{"date-parts":[[2018,8,22]],"date-time":"2018-08-22T18:31:57Z","timestamp":1534962717000},"page":"952-962","source":"Crossref","is-referenced-by-count":11,"title":["Deep Nearest Class Mean Model for Incremental Odor Classification"],"prefix":"10.1109","volume":"68","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6717-5727","authenticated-orcid":false,"given":"Yu","family":"Cheng","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3484-8785","authenticated-orcid":false,"given":"Kin-Yeung","family":"Wong","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5421-7622","authenticated-orcid":false,"given":"Kevin","family":"Hung","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3219-5207","authenticated-orcid":false,"given":"Weitong","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2080-0713","authenticated-orcid":false,"given":"Zhizhong","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9647-0941","authenticated-orcid":false,"given":"Jun","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.9"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2016.2598679"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2011.5995368"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2011.01.017"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2008.04.033"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2013.431"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2017.08.034"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2018.2789889"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2009.191"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-15555-0_6"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1002\/0470854774"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.551"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.83"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.467"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2015.2459678"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TSMC.2016.2597800"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2014.2367775"},{"key":"ref16","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2012.2205597"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2016.2528162"},{"key":"ref19","first-page":"1799","article-title":"Joint training of a convolutional network and a graphical model for human pose estimation","author":"tompson","year":"2014","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2016.2547185"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2012.02.163"},{"key":"ref27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.chemolab.2008.07.010","article-title":"Comparison of performance of five common classifiers represented as boundary methods: Euclidean distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector machines, as dependent on data structure","volume":"95","author":"dixon","year":"2009","journal-title":"Chemometrics Intell Lab Syst"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/S0956-5663(03)00086-1"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.snb.2011.06.036"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.107"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.snb.2011.10.071"},{"key":"ref8","first-page":"137","article-title":"A flying odor compass to autonomously locate the gas source","volume":"67","author":"luo","year":"2018","journal-title":"IEEE Trans Instrum Meas"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2009.2016874"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2014.2329753"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2017.2673241"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.snb.2007.09.044"},{"key":"ref20","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref22","first-page":"3104","article-title":"Sequence to sequence learning with neural networks","author":"sutskever","year":"2014","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2012.231"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2017.2669818"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1023\/A:1018628609742"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P16-1160"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.chemolab.2013.10.012"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/TSMC.2017.2691909"}],"container-title":["IEEE Transactions on Instrumentation and Measurement"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/19\/8663460\/08444069.pdf?arnumber=8444069","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,13]],"date-time":"2022-07-13T20:55:08Z","timestamp":1657745708000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8444069\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,4]]},"references-count":41,"journal-issue":{"issue":"4"},"URL":"https:\/\/doi.org\/10.1109\/tim.2018.2863438","relation":{},"ISSN":["0018-9456","1557-9662"],"issn-type":[{"value":"0018-9456","type":"print"},{"value":"1557-9662","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,4]]}}}