{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,25]],"date-time":"2024-09-25T04:32:45Z","timestamp":1727238765719},"reference-count":38,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2022YFB3102100"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["2042022kf1195","2042023kf0120"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62076187","62172303","62302343"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Key Research and Development Program of Hubei Province","award":["2022BAA039"]},{"DOI":"10.13039\/100014103","name":"Key Technology Research and Development Program of Shandong Province","doi-asserted-by":"publisher","award":["2022CXPT055"],"id":[{"id":"10.13039\/100014103","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100021171","name":"Basic and Applied Basic Research Foundation of Guangdong Province","doi-asserted-by":"publisher","award":["2022A1515110396"],"id":[{"id":"10.13039\/501100021171","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans.Inform.Forensic Secur."],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/tifs.2024.3444327","type":"journal-article","created":{"date-parts":[[2024,8,23]],"date-time":"2024-08-23T17:45:27Z","timestamp":1724435127000},"page":"8472-8484","source":"Crossref","is-referenced-by-count":0,"title":["Fregata: Fast Private Inference With Unified Secure Two-Party Protocols"],"prefix":"10.1109","volume":"19","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0883-6278","authenticated-orcid":false,"given":"Xuanang","family":"Yang","sequence":"first","affiliation":[{"name":"Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7212-5297","authenticated-orcid":false,"given":"Jing","family":"Chen","sequence":"additional","affiliation":[{"name":"Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0816-5777","authenticated-orcid":false,"given":"Yuqing","family":"Li","sequence":"additional","affiliation":[{"name":"Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3472-419X","authenticated-orcid":false,"given":"Kun","family":"He","sequence":"additional","affiliation":[{"name":"Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0591-4170","authenticated-orcid":false,"given":"Xiaojie","family":"Huang","sequence":"additional","affiliation":[{"name":"Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan, China"}]},{"given":"Zikuan","family":"Jiang","sequence":"additional","affiliation":[{"name":"Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9719-9313","authenticated-orcid":false,"given":"Hao","family":"Bai","sequence":"additional","affiliation":[{"name":"Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3634-3385","authenticated-orcid":false,"given":"Ruiying","family":"Du","sequence":"additional","affiliation":[{"name":"Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan, China"}]}],"member":"263","reference":[{"key":"ref1","first-page":"3937","article-title":"Using deep learning to enhance cancer diagnosis and classification","volume-title":"Proc. ICML","author":"Fakoor"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298682"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.14778\/3282495.3282499"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1145\/1161366.1161393"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/SP46215.2023.10179483"},{"key":"ref8","first-page":"2241","article-title":"Circa: Stochastic ReLUs for private deep learning","volume-title":"Proc. NeurIPS","author":"Ghodsi"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.14722\/ndss.2021.23166"},{"key":"ref10","first-page":"812","article-title":"Low latency privacy preserving inference","volume-title":"Proc. ICML","author":"Brutzkus"},{"key":"ref11","first-page":"1","article-title":"XONN: Xnor-based oblivious deep neural network inference","volume-title":"Proc. USENIX Secur. Sympo","author":"Riazi"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.14722\/ndss.2022.24058"},{"key":"ref13","first-page":"2651","article-title":"SWIFT: Super-fast and robust privacy-preserving machine learning","volume-title":"Proc. USENIX Secur. Symp.","author":"Koti"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TDSC.2020.3029899"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2023.3287072"},{"key":"ref16","first-page":"201","article-title":"CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy","volume-title":"Proc. ICML","author":"Gilad-Bachrach"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1145\/3196494.3196522"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.011.2000293"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.14722\/ndss.2021.24351"},{"key":"ref20","first-page":"809","article-title":"Cheetah: Lean and fast secure two-party deep neural network inference","volume-title":"Proc. USENIX Secur. Symp.","author":"Huang"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3134056"},{"key":"ref22","first-page":"1651","article-title":"GAZELLE: A low latency framework for secure neural network inference","volume-title":"Proc. USENIX Secur. Symp.","author":"Juvekar"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1145\/3411501.3419418"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1145\/3460120.3484797"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1145\/3372297.3417274"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00942"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00873"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.14722\/ndss.2015.23113"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2017.2761740"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4842-2845-6_6"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01352"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-662-53887-6_1"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-29011-4_28"},{"key":"ref34","first-page":"1895","article-title":"Evaluating differentially private machine learning in practice","volume-title":"Proc. USENIX Secur. Symp.","author":"Jayaraman"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1145\/2976749.2978318"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1145\/3243734.3243837"},{"volume-title":"SEAL","year":"2020","key":"ref37"},{"key":"ref38","article-title":"CryptoDL: Deep neural networks over encrypted data","volume-title":"arXiv:1711.05189","author":"Hesamifard","year":"2017"},{"key":"ref39","article-title":"Faster CryptoNets: Leveraging sparsity for real-world encrypted inference","volume-title":"arXiv:1811.09953","author":"Chou","year":"2018"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/DAC.2018.8465894"}],"container-title":["IEEE Transactions on Information Forensics and Security"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/10206\/10319981\/10645757.pdf?arnumber=10645757","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,24]],"date-time":"2024-09-24T17:23:29Z","timestamp":1727198609000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10645757\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":38,"URL":"https:\/\/doi.org\/10.1109\/tifs.2024.3444327","relation":{},"ISSN":["1556-6013","1556-6021"],"issn-type":[{"type":"print","value":"1556-6013"},{"type":"electronic","value":"1556-6021"}],"subject":[],"published":{"date-parts":[[2024]]}}}