{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T13:26:22Z","timestamp":1740144382304,"version":"3.37.3"},"reference-count":53,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province","award":["SKLACSS-202204"]},{"name":"Postdoctoral Fellowship Program of CPSF","award":["GZC20241731"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62372315","62306197"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Sichuan Science and Technology Program","award":["24ZDZX0007","2024NSFTD0049","2023ZYD0143","2023YFG0033","2024YFHZ0144","2024YFHZ0089","2023ZHCG0016"]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2021TQ0223","2022M712236"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Postdoctoral Joint Training Program of Sichuan University","award":["SCDXLHPY2307"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans.Inform.Forensic Secur."],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/tifs.2024.3422923","type":"journal-article","created":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T17:30:25Z","timestamp":1720114225000},"page":"6779-6794","source":"Crossref","is-referenced-by-count":0,"title":["DifFilter: Defending Against Adversarial Perturbations With Diffusion Filter"],"prefix":"10.1109","volume":"19","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-2778-1738","authenticated-orcid":false,"given":"Yong","family":"Chen","sequence":"first","affiliation":[{"name":"National Laboratory on Adaptive Optics, Chengdu, China"}]},{"given":"Xuedong","family":"Li","sequence":"additional","affiliation":[{"name":"College of Blockchain Industry, Chengdu University of Information Technology, Chengdu, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3868-3997","authenticated-orcid":false,"given":"Peng","family":"Hu","sequence":"additional","affiliation":[{"name":"College of Computer Science, Sichuan University, Chengdu, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0987-8472","authenticated-orcid":false,"given":"Dezhong","family":"Peng","sequence":"additional","affiliation":[{"name":"Sichuan Newstrong UHD Video Technology Company Ltd., Chengdu, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4821-3334","authenticated-orcid":false,"given":"Xu","family":"Wang","sequence":"additional","affiliation":[{"name":"Sichuan Newstrong UHD Video Technology Company Ltd., Chengdu, China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2021.3126733"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2019.2932228"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01501"},{"article-title":"On detecting adversarial perturbations","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Metzen","key":"ref4"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1007\/s10462-021-10125-w"},{"key":"ref6","article-title":"Explaining and harnessing adversarial examples","author":"Goodfellow","year":"2014","journal-title":"arXiv:1412.6572"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1706.06083"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00957"},{"key":"ref9","article-title":"Adversarial logit pairing","author":"Kannan","year":"2018","journal-title":"arXiv:1803.06373"},{"article-title":"Fast is better than free: Revisiting adversarial training","volume-title":"Proc. Int. Conf. Learn. Represent. (ICLR)","author":"Wong","key":"ref10"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2020.12.024"},{"key":"ref12","article-title":"Towards deep neural network architectures robust to adversarial examples","author":"Gu","year":"2014","journal-title":"arXiv:1412.5068"},{"key":"ref13","first-page":"6840","article-title":"Denoising diffusion probabilistic models","volume-title":"Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)","volume":"33","author":"Ho"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1145\/3422622"},{"key":"ref15","first-page":"16805","article-title":"Diffusion models for adversarial purification","volume-title":"Proc. Int. Conf. Mach. Learn. (ICML)","author":"Nie"},{"article-title":"Densepure: Understanding diffusion models towards adversarial robustness","volume-title":"Proc. Workshop Trustworthy Socially Responsible Mach. Learn. NeurIPS","author":"Chen","key":"ref16"},{"key":"ref17","article-title":"Intriguing properties of neural networks","author":"Szegedy","year":"2013","journal-title":"arXiv:1312.6199"},{"key":"ref18","article-title":"On the sensitivity of adversarial robustness to input data distributions","volume-title":"Proc. ICLR","volume":"4","author":"Ding"},{"article-title":"Improving the generalization of adversarial training with domain adaptation","volume-title":"Proc. Int. Conf. Learn. Represent. (ICLR)","author":"Song","key":"ref19"},{"article-title":"Improving adversarial robustness requires revisiting misclassified examples","volume-title":"Proc. Int. Conf. Learn. Represent. (ICLR)","author":"Wang","key":"ref20"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00103"},{"article-title":"Robust local features for improving the generalization of adversarial training","volume-title":"Proc. Int. Conf. Learn. Represent. (ICLR)","author":"Song","key":"ref22"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00126"},{"key":"ref24","first-page":"8270","article-title":"Adversarial distributional training for robust deep learning","volume-title":"Proc. Annu. Conf. Neural Inf. Process. Syst. (NIPS)","volume":"33","author":"Dong"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01304"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00095"},{"key":"ref27","article-title":"Keeping the bad guys out: Protecting and vaccinating deep learning with JPEG compression","author":"Das","year":"2017","journal-title":"arXiv:1705.02900"},{"article-title":"Countering adversarial images using input transformations","volume-title":"Proc. Int. Conf. Learn. Represent. (ICLR)","author":"Guo","key":"ref28"},{"article-title":"Defense-GAN: Protecting classifiers against adversarial attacks using generative models","volume-title":"Proc. Int. Conf. Learn. Represent. (ICLR)","author":"Samangouei","key":"ref29"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00681"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00357"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.17"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00669"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/0304-4149(82)90051-5"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.5244\/C.30.87"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.01543"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2019\/403"},{"key":"ref39","first-page":"12062","article-title":"Adversarial purification with score-based generative models","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Yoon"},{"key":"ref40","first-page":"14925","article-title":"Stable neural ode with Lyapunov-stable equilibrium points for defending against adversarial attacks","volume-title":"Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)","volume":"34","author":"Kang"},{"article-title":"DISCO: Adversarial defense with local implicit functions","volume-title":"Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)","author":"Ho","key":"ref41"},{"article-title":"DensePure: Understanding diffusion models towards adversarial robustness","volume-title":"Proc. Workshop Trustworthy Socially Responsible Mach. Learn. NeurIPS","author":"Xiao","key":"ref42"},{"key":"ref43","first-page":"2206","article-title":"Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Croce"},{"key":"ref44","first-page":"274","article-title":"Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Athalye"},{"key":"ref45","first-page":"284","article-title":"Synthesizing robust adversarial examples","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Athalye"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01468"},{"key":"ref47","first-page":"5025","article-title":"Adversarial risk and the dangers of evaluating against weak attacks","volume-title":"Proc. 35th Int. Conf. Mach. Learn.","author":"Uesato"},{"article-title":"Spatially transformed adversarial examples","volume-title":"Proc. Int. Conf. Learn. Represent. (ICLR)","author":"Xiao","key":"ref48"},{"article-title":"Stochastic gradient estimation with finite differences","volume-title":"Proc. NeurIPS Workshop Adv. Approx. Inference","author":"Buesing","key":"ref49"},{"article-title":"Pseudo numerical methods for diffusion models on manifolds","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Liu","key":"ref50"},{"key":"ref51","first-page":"5775","article-title":"DPM-Solver: A fast ODE solver for diffusion probabilistic model sampling in around 10 steps","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"35","author":"Lu"},{"key":"ref52","first-page":"1310","article-title":"Certified adversarial robustness via randomized smoothing","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Cohen"},{"key":"ref53","first-page":"4787","article-title":"DiffSmooth: Certifiably robust learning via diffusion models and local smoothing","volume-title":"Proc. 32nd USENIX Secur. Symp. (USENIX Security)","author":"Zhang"}],"container-title":["IEEE Transactions on Information Forensics and Security"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/10206\/10319981\/10584510.pdf?arnumber=10584510","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,18]],"date-time":"2024-07-18T06:09:03Z","timestamp":1721282943000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10584510\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":53,"URL":"https:\/\/doi.org\/10.1109\/tifs.2024.3422923","relation":{},"ISSN":["1556-6013","1556-6021"],"issn-type":[{"type":"print","value":"1556-6013"},{"type":"electronic","value":"1556-6021"}],"subject":[],"published":{"date-parts":[[2024]]}}}