{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T13:26:21Z","timestamp":1740144381774,"version":"3.37.3"},"reference-count":72,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001445","name":"DSO National Laboratories - Singapore","doi-asserted-by":"publisher","award":["DSOCL22332"],"id":[{"id":"10.13039\/501100001445","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans.Inform.Forensic Secur."],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/tifs.2024.3421273","type":"journal-article","created":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T17:32:19Z","timestamp":1719855139000},"page":"6545-6558","source":"Crossref","is-referenced-by-count":1,"title":["Semantic Deep Hiding for Robust Unlearnable Examples"],"prefix":"10.1109","volume":"19","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-4221-0842","authenticated-orcid":false,"given":"Ruohan","family":"Meng","sequence":"first","affiliation":[{"name":"School of Electrical and Electronic Engineering, Rapid-Rich Object Search (ROSE) Laboratory, Nanyang Technological University, Jurong West, Singapore"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5002-6549","authenticated-orcid":false,"given":"Chenyu","family":"Yi","sequence":"additional","affiliation":[{"name":"School of Electrical and Electronic Engineering, Rapid-Rich Object Search (ROSE) Laboratory, Nanyang Technological University, Jurong West, Singapore"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2730-9553","authenticated-orcid":false,"given":"Yi","family":"Yu","sequence":"additional","affiliation":[{"name":"School of Electrical and Electronic Engineering, Rapid-Rich Object Search (ROSE) Laboratory, Nanyang Technological University, Jurong West, Singapore"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4681-0431","authenticated-orcid":false,"given":"Siyuan","family":"Yang","sequence":"additional","affiliation":[{"name":"School of Electrical and Electronic Engineering, Rapid-Rich Object Search (ROSE) Laboratory, Nanyang Technological University, Jurong West, Singapore"}]},{"ORCID":"https:\/\/orcid.org\/0009-0006-6442-551X","authenticated-orcid":false,"given":"Bingquan","family":"Shen","sequence":"additional","affiliation":[{"name":"DSO National Laboratories, Queenstown, Singapore"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6262-8125","authenticated-orcid":false,"given":"Alex C.","family":"Kot","sequence":"additional","affiliation":[{"name":"School of Electrical and Electronic Engineering, Rapid-Rich Object Search (ROSE) Laboratory, Nanyang Technological University, Jurong West, Singapore"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01216-8_12"},{"key":"ref2","article-title":"Large image datasets: A pyrrhic win for computer vision?","author":"Prabhu","year":"2020","journal-title":"arXiv:2006.16923"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1145\/2883851.2883893"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2905915"},{"key":"ref5","first-page":"1","article-title":"Learning to confuse: Generating training time adversarial data with auto-encoder","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Feng"},{"key":"ref6","article-title":"Unlearnable examples: Making personal data unexploitable","author":"Huang","year":"2021","journal-title":"arXiv:2101.04898"},{"key":"ref7","first-page":"16209","article-title":"Better safe than sorry: Preventing delusive adversaries with adversarial training","volume-title":"Proc. NIPS","author":"Tao"},{"key":"ref8","first-page":"30339","article-title":"Adversarial examples make strong poisons","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"34","author":"Fowl"},{"key":"ref9","first-page":"1","article-title":"Data poisoning won\u2019t save you from facial recognition","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Radiya-Dixit"},{"key":"ref10","first-page":"1","article-title":"Robust unlearnable examples: Protecting data privacy against adversarial learning","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Fu"},{"key":"ref11","article-title":"Fooling adversarial training with inducing noise","author":"Wang","year":"2021","journal-title":"arXiv:2111.10130"},{"key":"ref12","first-page":"1","article-title":"Is adversarial training really a silver bullet for mitigating data poisoning?","volume-title":"Proc. 11th Int. Conf. Learn. Represent.","author":"Wen"},{"key":"ref13","first-page":"22473","article-title":"Image shortcut squeezing: Countering perturbative availability poisons with compression","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Liu"},{"key":"ref14","article-title":"One-pixel shortcut: On the learning preference of deep neural networks","author":"Wu","year":"2022","journal-title":"arXiv:2205.12141"},{"key":"ref15","article-title":"ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness","author":"Geirhos","year":"2018","journal-title":"arXiv:1811.12231"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-10590-1_53"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2023.3268843"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2019.103853"},{"key":"ref20","first-page":"1","article-title":"Hiding images in plain sight: Deep steganography","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"30","author":"Baluja"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i01.5463"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00469"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/s11042-018-6951-z"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2020.3025438"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2021.3114555"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/tdsc.2024.3363692"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/tcsvt.2023.3348291"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2022.3141725"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-022-01688-4"},{"key":"ref30","article-title":"Traceable and authenticable image tagging for fake news detection","author":"Meng","year":"2022","journal-title":"arXiv:2211.10923"},{"key":"ref31","first-page":"284","article-title":"Synthesizing robust adversarial examples","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Athalye"},{"key":"ref32","article-title":"Transferable unlearnable examples","author":"Ren","year":"2022","journal-title":"arXiv:2210.10114"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.00388"},{"key":"ref34","first-page":"27374","article-title":"Autoregressive perturbations for data poisoning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"35","author":"Sandoval-Segura"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1145\/3534678.3539241"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2023.3246766"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00772"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2023.3262156"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2023.3288672"},{"key":"ref40","article-title":"Improved regularization of convolutional neural networks with cutout","author":"DeVries","year":"2017","journal-title":"arXiv:1708.04552"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00612"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.48550\/arxiv.1710.09412"},{"key":"ref43","article-title":"Learning the unlearnable: Adversarial augmentations suppress unlearnable example attacks","author":"Qin","year":"2023","journal-title":"arXiv:2303.15127"},{"key":"ref44","article-title":"The Devil\u2019s advocate: Shattering the illusion of unexploitable data using diffusion models","author":"Dolatabadi","year":"2023","journal-title":"arXiv:2303.08500"},{"key":"ref45","article-title":"Diffusion models for adversarial purification","author":"Nie","year":"2022","journal-title":"arXiv:2205.07460"},{"key":"ref46","first-page":"1","article-title":"What can we learn from unlearnable datasets?","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"36","author":"Sandoval-Segura"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2021.3091902"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2022.3184845"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2023.3307970"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01067"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1145\/3374664.3375751"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2022.3201472"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v37i1.25115"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01042"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV51070.2023.00355"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV51070.2023.00230"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"ref58","first-page":"1027","article-title":"K-means++ the advantages of careful seeding","volume-title":"Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms","author":"Arthur"},{"key":"ref59","first-page":"8748","article-title":"Learning transferable visual models from natural language supervision","volume-title":"Proc. ICML","author":"Radford"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV51070.2023.00355"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1038\/s42256-020-00257-z"},{"volume-title":"Human Behavior and the Principle of Least Effort","year":"1949","author":"Zipf","key":"ref62"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.74"},{"article-title":"Learning multiple layers of features from tiny images","year":"2009","author":"Krizhevsky","key":"ref64"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"ref66","article-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2014","journal-title":"arXiv:1409.1556"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.243"},{"key":"ref68","article-title":"An image is worth 16\u00d716 words: Transformers for image recognition at scale","author":"Dosovitskiy","year":"2020","journal-title":"arXiv:2010.11929"},{"key":"ref69","article-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014","journal-title":"arXiv:1412.6980"},{"key":"ref70","article-title":"Indiscriminate poisoning attacks on unsupervised contrastive learning","author":"He","year":"2022","journal-title":"arXiv:2202.11202"},{"key":"ref71","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.00376"},{"key":"ref72","article-title":"Imperceptible protection against style imitation from diffusion models","author":"Ahn","year":"2024","journal-title":"arXiv:2403.19254"}],"container-title":["IEEE Transactions on Information Forensics and Security"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/10206\/10319981\/10578062.pdf?arnumber=10578062","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T05:35:04Z","timestamp":1720330504000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10578062\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":72,"URL":"https:\/\/doi.org\/10.1109\/tifs.2024.3421273","relation":{},"ISSN":["1556-6013","1556-6021"],"issn-type":[{"type":"print","value":"1556-6013"},{"type":"electronic","value":"1556-6021"}],"subject":[],"published":{"date-parts":[[2024]]}}}