{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T13:43:15Z","timestamp":1742391795773,"version":"3.37.3"},"reference-count":58,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"T\u00dcB\u0130ITAK"},{"DOI":"10.13039\/501100004410","name":"Scientific and Technological Research Council of Turkey","doi-asserted-by":"publisher","award":["119E088"],"id":[{"id":"10.13039\/501100004410","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100014013","name":"UK Research and Innovation (UKRI) for the Project \u201cAIR\u201d (European Research Council","doi-asserted-by":"publisher","award":["EP\/X030806\/1"],"id":[{"id":"10.13039\/100014013","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans.Inform.Forensic Secur."],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/tifs.2023.3345171","type":"journal-article","created":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T19:20:10Z","timestamp":1703013610000},"page":"2010-2022","source":"Crossref","is-referenced-by-count":3,"title":["Byzantines Can Also Learn From History: Fall of Centered Clipping in Federated Learning"],"prefix":"10.1109","volume":"19","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-1428-2793","authenticated-orcid":false,"given":"Kerem","family":"\u00d6zfatura","sequence":"first","affiliation":[{"name":"KUIS AI Center, Koç University, İIstanbul, Turkey"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6974-5671","authenticated-orcid":false,"given":"Emre","family":"\u00d6zfatura","sequence":"additional","affiliation":[{"name":"IPC Laboratory, Imperial College London, London, U.K"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2099-2206","authenticated-orcid":false,"given":"Alptekin","family":"K\u00fcp\u00e7\u00fc","sequence":"additional","affiliation":[{"name":"Department of Computer Engineering, Koç University, İIstanbul, Turkey"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7725-395X","authenticated-orcid":false,"given":"Deniz","family":"Gunduz","sequence":"additional","affiliation":[{"name":"IPC Laboratory, Imperial College London, London, U.K"}]}],"member":"263","reference":[{"key":"ref1","first-page":"1232","article-title":"Fixing by mixing: A recipe for optimal Byzantine ML under heterogeneity","volume-title":"Proc. AISTATS","author":"Allouah"},{"key":"ref2","first-page":"2938","article-title":"How to backdoor federated learning","volume-title":"Proc. AISTATS","author":"Bagdasaryan"},{"key":"ref3","first-page":"1","article-title":"A little is enough: Circumventing defenses for distributed learning","volume-title":"Proc. NIPS","author":"Baruch"},{"key":"ref4","first-page":"1","article-title":"signSGD with majority vote is communication efficient and fault tolerant","volume-title":"Proc. ICLR","author":"Bernstein"},{"key":"ref5","first-page":"634","article-title":"Analyzing federated learning through an adversarial lens","volume-title":"Proc. ICML","author":"Bhagoji"},{"key":"ref6","first-page":"1","article-title":"Poisoning attacks against support vector machines","volume-title":"Proc. ICML","author":"Biggio"},{"key":"ref7","first-page":"1","article-title":"Machine learning with adversaries: Byzantine tolerant gradient descent","volume-title":"Proc. NIPS","author":"Blanchard"},{"key":"ref8","first-page":"1","article-title":"Intriguing perties of neural networks","volume-title":"Proc. ICLR","author":"Bruna"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.14722\/ndss.2021.24434"},{"key":"ref10","first-page":"947","article-title":"Data poisoning attacks to local differential privacy protocols","volume-title":"Proc. USENIX Secur.","author":"Cao"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2017.49"},{"key":"ref12","first-page":"19","article-title":"Towards taming the resource and data heterogeneity in federated learning","volume-title":"Proc. USENIX OpML","author":"Chai"},{"key":"ref13","article-title":"Targeted backdoor attacks on deep learning systems using data poisoning","author":"Chen","year":"2017","journal-title":"arXiv:1712.05526"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1145\/3154503"},{"key":"ref15","first-page":"1","article-title":"Distributed momentum for Byzantine-resilient stochastic gradient descent","volume-title":"Proc. ICLR","author":"El-Mhamdi"},{"key":"ref16","first-page":"3521","article-title":"The hidden vulnerability of distributed learning in byzantium","volume-title":"Proc. ICML","author":"El Mhamdi"},{"key":"ref17","first-page":"1605","article-title":"Local model poisoning attacks to Byzantine-robust federated learning","volume-title":"Proc. USENIX Conf. Secur. Symp.","author":"Fang"},{"key":"ref18","first-page":"6246","article-title":"Byzantine machine learning made easy by resilient averaging of momentums","volume-title":"Proc. ICML","author":"Farhadkhani"},{"key":"ref19","first-page":"301","article-title":"The limitations of federated learning in Sybil settings","volume-title":"Proc. 23rd Int. Symp. Res. Attacks, Intrusions Defenses (RAID)","author":"Fung"},{"key":"ref20","article-title":"Robust aggregation for adaptive privacy preserving federated learning in healthcare","author":"Grama","year":"2020","journal-title":"arXiv:2009.08294"},{"key":"ref21","article-title":"Federated learning for mobile keyboard prediction","author":"Hard","year":"2018","journal-title":"arXiv:1811.03604"},{"key":"ref22","article-title":"Byzantine-robust decentralized learning via self-centered clipping","author":"He","year":"2022","journal-title":"arXiv:2202.01545"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1561\/2200000083"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1038\/s42256-020-0186-1"},{"key":"ref25","first-page":"5311","article-title":"Learning from history for Byzantine robust optimization","volume-title":"Proc. ICML","author":"Karimireddy"},{"key":"ref26","first-page":"1","article-title":"Byzantine-robust learning on heterogeneous datasets via bucketing","volume-title":"Proc. ICLR","author":"Karimireddy"},{"article-title":"CIFAR-10 (Canadian institute for advanced research)","year":"2010","author":"Krizhevsky","key":"ref27"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1145\/357172.357176"},{"volume-title":"MNIST Handwritten Digit Database","year":"2010","author":"LeCun","key":"ref29"},{"key":"ref30","first-page":"1","article-title":"Abnormal client behavior detection in federated learning","volume-title":"Proc. NIPS","author":"Li"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-32692-0_16"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1706.06083"},{"key":"ref33","first-page":"1","article-title":"Dopamine: Differentially private federated learning on medical data","volume-title":"Proc. AAAI","author":"Malekzadeh"},{"key":"ref34","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","volume-title":"Proc. AISTATS","author":"McMahan"},{"article-title":"Estimating a Dirichlet distribution","year":"2000","author":"Minka","key":"ref35"},{"key":"ref36","first-page":"543","article-title":"A method for solving the convex programming problem with convergence rate O(1\/k2)","volume-title":"Proc. USSR Acad. Sci.","author":"Nesterov"},{"key":"ref37","first-page":"25","article-title":"FLGUARD: Secure and private federated learning","volume":"2021","author":"Nguyen","year":"2021","journal-title":"IACR Cryptol. ePrint Arch."},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2023.3253853"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2022.3153135"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1016\/0041-5553(64)90137-5"},{"key":"ref41","article-title":"Can decentralized learning be more robust than federated learning?","author":"Raynal","year":"2023","journal-title":"arXiv:2303.03829"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/LCOMM.2022.3174295"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1038\/s41746-020-00323-1"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i07.6871"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.14722\/ndss.2021.24498"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/SP46214.2022.9833647"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2020.3041404"},{"key":"ref48","first-page":"1139","article-title":"On the importance of initialization and momentum in deep learning","volume-title":"Proc. ICML","author":"Sutskever"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.308"},{"key":"ref50","first-page":"1","article-title":"Attack of the tails: Yes, you really can backdoor federated learning","volume-title":"Proc. NeIPS","author":"Wang"},{"article-title":"SlOWMO: Improving communication-efficient distributed SGD with slow momentum","volume-title":"Proc. ICLR","author":"Wang","key":"ref51"},{"key":"ref52","first-page":"1","article-title":"Escaping saddle points faster with stochastic momentum","volume-title":"Proc. ICLR","author":"Wang"},{"key":"ref53","article-title":"Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms","author":"Xiao","year":"2017","journal-title":"arXiv:1708.07747"},{"article-title":"DBA: Distributed backdoor attacks against federated learning","volume-title":"Proc. ICLR","author":"Xie","key":"ref54"},{"key":"ref55","first-page":"261","article-title":"Fall of empires: Breaking Byzantine-tolerant SGD by inner product manipulation","volume-title":"Proc. 35th Uncertainty Artif. Intell. Conf.","author":"Xie"},{"key":"ref56","first-page":"5650","article-title":"Byzantine-robust distributed learning: Towards optimal statistical rates","volume-title":"Proc. ICML","author":"Yin"},{"key":"ref57","first-page":"493","article-title":"BatchCrypt: Efficient homomorphic encryption for cross-silo federated learning","volume-title":"Proc. USENIX","author":"Zhang"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2023.3270908"}],"container-title":["IEEE Transactions on Information Forensics and Security"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10206\/10319981\/10366296.pdf?arnumber=10366296","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,24]],"date-time":"2024-01-24T03:52:40Z","timestamp":1706068360000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10366296\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":58,"URL":"https:\/\/doi.org\/10.1109\/tifs.2023.3345171","relation":{},"ISSN":["1556-6013","1556-6021"],"issn-type":[{"type":"print","value":"1556-6013"},{"type":"electronic","value":"1556-6021"}],"subject":[],"published":{"date-parts":[[2024]]}}}