{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,28]],"date-time":"2024-08-28T18:27:33Z","timestamp":1724869653240},"reference-count":51,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62076251","62001493"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans.Inform.Forensic Secur."],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/tifs.2023.3333567","type":"journal-article","created":{"date-parts":[[2023,11,16]],"date-time":"2023-11-16T18:54:39Z","timestamp":1700160879000},"page":"1183-1198","source":"Crossref","is-referenced-by-count":1,"title":["MalPatch: Evading DNN-Based Malware Detection With Adversarial Patches"],"prefix":"10.1109","volume":"19","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2766-3405","authenticated-orcid":false,"given":"Dazhi","family":"Zhan","sequence":"first","affiliation":[{"name":"College of Command and Control Engineering, Army Engineering University of PLA, Nanjing, China"}]},{"given":"Yexin","family":"Duan","sequence":"additional","affiliation":[{"name":"Zhenjiang Campus, Army Military Transportation University of PLA, Zhenjiang, China"}]},{"given":"Yue","family":"Hu","sequence":"additional","affiliation":[{"name":"College of Systems Engineering, National University of Defense Technology, Changsha, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2317-5121","authenticated-orcid":false,"given":"Weili","family":"Li","sequence":"additional","affiliation":[{"name":"College of Systems Engineering, National University of Defense Technology, Changsha, China"}]},{"given":"Shize","family":"Guo","sequence":"additional","affiliation":[{"name":"College of Command and Control Engineering, Army Engineering University of PLA, Nanjing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8615-7313","authenticated-orcid":false,"given":"Zhisong","family":"Pan","sequence":"additional","affiliation":[{"name":"College of Command and Control Engineering, Army Engineering University of PLA, Nanjing, China"}]}],"member":"263","reference":[{"key":"ref1","first-page":"1","article-title":"Malware detection by eating a whole exe","volume-title":"Proc. AAAI Conf. Artif. Intell.","author":"Raff"},{"key":"ref2","article-title":"EMBER: An open dataset for training static PE malware machine learning models","author":"Anderson","year":"2018","journal-title":"arXiv:1804.04637"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/BigData47090.2019.9006464"},{"key":"ref4","first-page":"1","article-title":"Deep convolutional malware classifiers can learn from raw executables and labels only","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Kr\u010d\u00e1l"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/NTMS.2018.8328749"},{"key":"ref6","article-title":"Explaining and harnessing adversarial examples","author":"Goodfellow","year":"2014","journal-title":"arXiv:1412.6572"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00957"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00284"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.23919\/EUSIPCO.2018.8553214"},{"key":"ref10","article-title":"Deceiving end-to-end deep learning malware detectors using adversarial examples","author":"Kreuk","year":"2018","journal-title":"arXiv:1802.04528"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1145\/3473039"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2022.102869"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/3433210.3453086"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/S1353-4858(21)00088-X"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2021\/635"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.17"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1145\/3319535.3345660"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00893"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D19-1221"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2019.8682430"},{"key":"ref21","article-title":"Universal adversarial audio perturbations","author":"Abdoli","year":"2019","journal-title":"arXiv:1908.03173"},{"key":"ref22","article-title":"Realizable universal adversarial perturbations for malware","author":"Labaca-Castro","year":"2021","journal-title":"arXiv:2102.06747"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-73671-2_2"},{"key":"ref24","article-title":"Adversarial patch","author":"Brown","year":"2017","journal-title":"arXiv:1712.09665"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/SPW.2019.00017"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v32i1.11409"},{"issue":"12","key":"ref27","first-page":"1","article-title":"Learning to detect and classify malicious executables in the wild","volume":"7","author":"Kolter","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1145\/2016904.2016908"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/icisa.2011.5772330"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2805301"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1007\/s10207-014-0242-0"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.4236\/jcc.2018.61016"},{"key":"ref33","article-title":"Intriguing properties of neural networks","author":"Szegedy","year":"2013","journal-title":"arXiv:1312.6199"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00444"},{"key":"ref35","article-title":"Towards deep learning models resistant to adversarial attacks","author":"Madry","year":"2017","journal-title":"arXiv:1706.06083"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2017.49"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/SP40000.2020.00073"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/SPW.2019.00015"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2913439"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.74"},{"key":"ref41","first-page":"1","volume-title":"Evading machine learning malware detection","author":"Anderson","year":"2017"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/EuroSPW59978.2023.00052"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58574-7_41"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2022.3186743"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2021.3082330"},{"key":"ref46","first-page":"1","article-title":"Explaining vulnerabilities of deep learning to adversarial malware binaries","volume-title":"Proc. Italian Conf. Cybersecur.","volume":"2315","author":"Demetrio"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00196"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1145\/3097983.3098158"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2016.41"},{"key":"ref50","article-title":"Adversarial perturbations against deep neural networks for malware classification","author":"Grosse","year":"2016","journal-title":"arXiv:1606.04435"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2018.2886017"}],"container-title":["IEEE Transactions on Information Forensics and Security"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10206\/10319981\/10319738.pdf?arnumber=10319738","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T23:28:36Z","timestamp":1703028516000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10319738\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":51,"URL":"https:\/\/doi.org\/10.1109\/tifs.2023.3333567","relation":{},"ISSN":["1556-6013","1556-6021"],"issn-type":[{"value":"1556-6013","type":"print"},{"value":"1556-6021","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]}}}