{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:08:21Z","timestamp":1726762101781},"reference-count":46,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001665","name":"ANR-AID Chaire SAIDA","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001665","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans.Inform.Forensic Secur."],"published-print":{"date-parts":[[2021]]},"DOI":"10.1109\/tifs.2020.3021899","type":"journal-article","created":{"date-parts":[[2020,9,4]],"date-time":"2020-09-04T20:50:04Z","timestamp":1599252604000},"page":"701-713","source":"Crossref","is-referenced-by-count":32,"title":["Walking on the Edge: Fast, Low-Distortion Adversarial Examples"],"prefix":"10.1109","volume":"16","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9690-6952","authenticated-orcid":false,"given":"Hanwei","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7476-4482","authenticated-orcid":false,"given":"Yannis","family":"Avrithis","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1565-765X","authenticated-orcid":false,"given":"Teddy","family":"Furon","sequence":"additional","affiliation":[]},{"given":"Laurent","family":"Amsaleg","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00514"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.01148"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.23919\/EUSIPCO.2018.8553164"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00445"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/EuroSP.2018.00041"},{"key":"ref30","author":"papernot","year":"2016","journal-title":"arXiv 1610 00768"},{"key":"ref37","article-title":"Intriguing properties of neural networks","author":"szegedy","year":"2013","journal-title":"arXiv 1312 6199"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.308"},{"key":"ref35","first-page":"5809","article-title":"First-order adversarial vulnerability of neural networks and input dimension","author":"simon-gabriel","year":"2019","journal-title":"Proc Int Conf Mach Learn (ICML)"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2018.00211"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1007\/s11042-018-5853-4"},{"key":"ref40","article-title":"Ensemble adversarial training: Attacks and defenses","author":"tram\u00e8r","year":"2017","journal-title":"arXiv 1705 07204"},{"key":"ref11","first-page":"265","article-title":"On the algorithmic implementation of multiclass kernel-based vector machines","volume":"2","author":"crammer","year":"2001","journal-title":"J Mach Learn Res"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2017.2718494"},{"key":"ref14","first-page":"3","article-title":"A rotation and a translation suffice: Fooling CNNs with simple transformations","volume":"1","author":"engstrom","year":"2017","journal-title":"arXiv 1712 02779"},{"key":"ref15","first-page":"1632","article-title":"Robustness of classifiers: From adversarial to random noise","author":"fawzi","year":"2016","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1155\/2008\/597040"},{"key":"ref17","article-title":"Explaining and harnessing adversarial examples","author":"goodfellow","year":"2014","journal-title":"arXiv 1412 6572"},{"key":"ref18","article-title":"Generalized BackPropagation, Étude De Cas: Orthogonality","author":"harandi","year":"2016","journal-title":"arXiv 1611 05927"},{"key":"ref19","first-page":"1","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"ioffe","year":"2015","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref28","article-title":"Universal adversarial perturbations","author":"moosavi-dezfooli","year":"2016","journal-title":"arXiv 1610 08401"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2019.8802997"},{"key":"ref27","article-title":"Towards deep learning models resistant to adversarial attacks","author":"madry","year":"2017","journal-title":"arXiv 1706 06083"},{"key":"ref3","first-page":"1","article-title":"Why do deep convolutional networks generalize so poorly to small image transformations?","volume":"20","author":"azulay","year":"2019","journal-title":"J Mach Learn Res"},{"key":"ref6","first-page":"1","article-title":"Decision-based adversarial attacks: Reliable attacks against black-box machine learning models","author":"brendel","year":"2018","journal-title":"Proc ICLR"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.282"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TAC.2013.2254619"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2017.49"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2019.8803776"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/WIFS.2017.8267651"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/SPW.2018.00009"},{"key":"ref1","author":"absil","year":"2009","journal-title":"Optimization Algorithms on Matrix Manifolds"},{"key":"ref46","first-page":"4592","article-title":"Riemannian SVRG: Fast stochastic optimization on Riemannian manifolds","author":"zhang","year":"2016","journal-title":"Proc NIPS"},{"key":"ref20","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2014","journal-title":"arXiv 1412 6980"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.153"},{"key":"ref22","article-title":"Adversarial examples in the physical world","author":"kurakin","year":"2016","journal-title":"arXiv 1607 02533"},{"key":"ref21","article-title":"Learning multiple layers of features from tiny images","author":"krizhevsky","year":"2009"},{"key":"ref42","first-page":"2","article-title":"On the convergence and robustness of adversarial training","author":"wang","year":"2019","journal-title":"Proc ICML"},{"key":"ref24","author":"lecun","year":"2010","journal-title":"MNIST Handwritten Digit Database"},{"key":"ref41","article-title":"The space of transferable adversarial examples","author":"tram\u00e8r","year":"2017","journal-title":"arXiv 1704 03453"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-94042-7_11"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/543"},{"key":"ref26","first-page":"3","article-title":"Rectifier nonlinearities improve neural network acoustic models","volume":"30","author":"maas","year":"2013","journal-title":"Proc ICML"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2003.819861"},{"key":"ref25","first-page":"4898","article-title":"Universal perturbation attack against image retrieval","author":"li","year":"2018","journal-title":"Proc IEEE\/CVF Int Conf Comput Vis (ICCV)"}],"container-title":["IEEE Transactions on Information Forensics and Security"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10206\/9151439\/09186644.pdf?arnumber=9186644","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T14:52:44Z","timestamp":1652194364000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9186644\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"references-count":46,"URL":"https:\/\/doi.org\/10.1109\/tifs.2020.3021899","relation":{},"ISSN":["1556-6013","1556-6021"],"issn-type":[{"value":"1556-6013","type":"print"},{"value":"1556-6021","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021]]}}}