{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T09:57:08Z","timestamp":1740131828638,"version":"3.37.3"},"reference-count":73,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62125102"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National Key Research and Development Program of China","award":["2022ZD0160401"]},{"name":"Beijing Natural Science Foundation","award":["JL23005"]},{"name":"Postdoctoral Fellowship Program of CPSF","award":["GZB20240933"]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Geosci. Remote Sensing"],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/tgrs.2024.3450874","type":"journal-article","created":{"date-parts":[[2024,8,28]],"date-time":"2024-08-28T18:55:21Z","timestamp":1724871321000},"page":"1-14","source":"Crossref","is-referenced-by-count":3,"title":["Spectral-Cascaded Diffusion Model for Remote Sensing Image Spectral Super-Resolution"],"prefix":"10.1109","volume":"62","author":[{"ORCID":"https:\/\/orcid.org\/0009-0005-4227-3933","authenticated-orcid":false,"given":"Bowen","family":"Chen","sequence":"first","affiliation":[{"name":"Image Processing Center, School of Astronautics, and the State Key Laboratory of Virtual Reality Technology, and Systems, Beihang University, Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7158-6772","authenticated-orcid":false,"given":"Liqin","family":"Liu","sequence":"additional","affiliation":[{"name":"Image Processing Center, School of Astronautics, and the State Key Laboratory of Virtual Reality Technology, and Systems, Beihang University, Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3034-6646","authenticated-orcid":false,"given":"Chenyang","family":"Liu","sequence":"additional","affiliation":[{"name":"Image Processing Center, School of Astronautics, and the State Key Laboratory of Virtual Reality Technology, and Systems, Beihang University, Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1774-552X","authenticated-orcid":false,"given":"Zhengxia","family":"Zou","sequence":"additional","affiliation":[{"name":"Shanghai Artificial Intelligence Laboratory, Shanghai, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4772-3172","authenticated-orcid":false,"given":"Zhenwei","family":"Shi","sequence":"additional","affiliation":[{"name":"Image Processing Center, School of Astronautics, and the State Key Laboratory of Virtual Reality Technology, and Systems, Beihang University, Beijing, China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/JSTARS.2021.3090256"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.rse.2022.113000"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2022.3147695"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2023.3322558"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2024.3362475"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.3390\/rs12244193"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.inffus.2023.101812"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1002\/col.20431"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1145\/2733373.2806223"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46478-7_2"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2024.3392606"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01042"},{"key":"ref13","article-title":"Hierarchical text-conditional image generation with CLIP latents","author":"Ramesh","year":"2022","journal-title":"arXiv:2204.06125"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2018.00139"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i07.6978"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2021.3084682"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00425"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2022.3142258"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/tgrs.2021.3079969"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2021.3104177"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1007\/s11432-020-3102-9"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2021.3073501"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/tnnls.2024.3359852"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1145\/3422622"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2019.00122"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/JSTARS.2021.3099242"},{"key":"ref27","first-page":"8780","article-title":"Diffusion models beat GANs on image synthesis","volume-title":"Proc. NIPS","volume":"34","author":"Dhariwal"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2022.3204461"},{"key":"ref29","first-page":"6840","article-title":"Denoising diffusion probabilistic models","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"33","author":"Ho"},{"key":"ref30","first-page":"8162","article-title":"Improved denoising diffusion probabilistic models","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Nichol"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.01760"},{"key":"ref32","article-title":"Semantic image synthesis via diffusion models","author":"Wang","year":"2022","journal-title":"arXiv:2207.00050"},{"volume-title":"IEEE GRSS Data Fusion Contest","year":"2018","key":"ref33"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/JSTARS.2019.2911113"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2024.3357173"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2023.3349004"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2019.2902431"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2023.3272473"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-03335-4_18"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2020.2979908"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2021.3079961"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1016\/j.inffus.2020.11.001"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1364\/OL.16.001277"},{"key":"ref44","first-page":"471","article-title":"In defense of shallow learned spectral reconstruction from RGB images","volume-title":"Proc. IEEE Int. Conf. Comput. Vis. Workshops","author":"Aeschbacher"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2021.3104476"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2020.3004934"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2021.3098767"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2023.3238506"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/TCI.2024.3384811"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2021.3056181"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2022.3173532"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2023.3335975"},{"key":"ref53","article-title":"Classifier-free diffusion guidance","author":"Ho","year":"2022","journal-title":"arXiv:2207.12598"},{"key":"ref54","first-page":"16784","article-title":"GLIDE: Towards photorealistic image generation and editing with text-guided diffusion models","volume-title":"Proc. Int. Conf. Mach. Learn. (ICML)","author":"Nichol"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01117"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1145\/3528233.3530757"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2024.3358913"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/JSTARS.2024.3386702"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2023.3341437"},{"key":"ref60","first-page":"1","article-title":"Neural discrete representation learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"30","author":"Van Den Oord"},{"key":"ref61","first-page":"1","article-title":"Generating diverse high-fidelity images with VQ-VAE-2","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Razavi"},{"key":"ref62","article-title":"Generating high fidelity images with subscale pixel networks and multidimensional upscaling","author":"Menick","year":"2018","journal-title":"arXiv:1812.01608"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1109\/CISP-BMEI51763.2020.9263540"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.1007\/s11432-019-2798-9"},{"issue":"1","key":"ref65","first-page":"2249","article-title":"Cascaded diffusion models for high fidelity image generation","volume":"23","author":"Ho","year":"2022","journal-title":"J. Mach. Learn. Res."},{"key":"ref66","first-page":"36479","article-title":"Photorealistic text-to-image diffusion models with deep language understanding","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"35","author":"Saharia"},{"key":"ref67","first-page":"2256","article-title":"Deep unsupervised learning using nonequilibrium thermodynamics","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Sohl-Dickstein"},{"key":"ref68","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"ref69","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref70","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1706.03762"},{"key":"ref71","article-title":"DPM-Solver++: Fast solver for guided sampling of diffusion probabilistic models","author":"Lu","year":"2022","journal-title":"arXiv:2211.01095"},{"key":"ref72","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2003.819861"},{"key":"ref73","article-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014","journal-title":"arXiv:1412.6980"}],"container-title":["IEEE Transactions on Geoscience and Remote Sensing"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/36\/10354519\/10654291.pdf?arnumber=10654291","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T17:47:15Z","timestamp":1725904035000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10654291\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":73,"URL":"https:\/\/doi.org\/10.1109\/tgrs.2024.3450874","relation":{},"ISSN":["0196-2892","1558-0644"],"issn-type":[{"type":"print","value":"0196-2892"},{"type":"electronic","value":"1558-0644"}],"subject":[],"published":{"date-parts":[[2024]]}}}