{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T17:03:51Z","timestamp":1726851831905},"reference-count":57,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["42071297"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["020914380119"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Geosci. Remote Sensing"],"published-print":{"date-parts":[[2023]]},"DOI":"10.1109\/tgrs.2023.3327780","type":"journal-article","created":{"date-parts":[[2023,10,26]],"date-time":"2023-10-26T17:55:33Z","timestamp":1698342933000},"page":"1-16","source":"Crossref","is-referenced-by-count":13,"title":["Exchanging Dual-Encoder\u2013Decoder: A New Strategy for Change Detection With Semantic Guidance and Spatial Localization"],"prefix":"10.1109","volume":"61","author":[{"ORCID":"http:\/\/orcid.org\/0009-0004-4007-743X","authenticated-orcid":false,"given":"Sijie","family":"Zhao","sequence":"first","affiliation":[{"name":"Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6188-0257","authenticated-orcid":false,"given":"Xueliang","family":"Zhang","sequence":"additional","affiliation":[{"name":"Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2739-3302","authenticated-orcid":false,"given":"Pengfeng","family":"Xiao","sequence":"additional","affiliation":[{"name":"Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2614-8850","authenticated-orcid":false,"given":"Guangjun","family":"He","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Space-Ground Integrated Information Technology, Space Star Technology Company Ltd., Beijing, China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1080\/01431168908903939"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1007\/s10661-009-0798-8"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2021.12.005"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.rse.2013.01.012"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2022.07.016"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2018.2864987"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/MGRS.2020.3032575"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2020.06.003"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2021.10.001"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2021.10.015"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2022.02.021"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2018.8451652"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/tim.2023.3243680"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/j.rse.2015.01.006"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1080\/01431161.2010.524676"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.apgeog.2010.10.012"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1080\/01431160903571791"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.5194\/isprsarchives-XXXVIII-3-W22-49-2011"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.4135\/9780857021052.n33"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1016\/j.jag.2011.07.002"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1080\/01431161.2011.648285"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/36.843009"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1080\/014311698216062"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/IGARSS.2019.8900330"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"ref26","first-page":"1","article-title":"Convolutional LSTM network: A machine learning approach for precipitation nowcasting","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"28","author":"Shi"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2020.3033009"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.3390\/rs11111382"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2021.03.005"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2021.05.001"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2021.05.002"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1807.06521"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01264-9_8"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2021.3056416"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01155"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.5194\/isprs-archives-XLII-2-565-2018"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2021.3085870"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2018.2858817"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.3390\/rs12101662"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2022.05.001"},{"key":"ref41","article-title":"Attention U-Net: Learning where to look for the pancreas","author":"Oktay","year":"2018","journal-title":"arXiv:1804.03999"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/JSTARS.2022.3184298"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2020.2988032"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2022.3169479"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2022.3159544"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2021.3095166"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP42928.2021.9506560"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.3390\/info11020125"},{"key":"ref49","first-page":"8024","article-title":"PyTorch: An imperative style, high-performance deep learning library","volume-title":"Advances in Neural Information Processing Systems 32","author":"Paszke","year":"2019"},{"key":"ref50","article-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014","journal-title":"arXiv:1412.6980"},{"key":"ref51","first-page":"2712","article-title":"Using pre-training can improve model robustness and uncertainty","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Hendrycks"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.3390\/rs13183707"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.660"},{"key":"ref54","first-page":"249","article-title":"Understanding the difficulty of training deep feedforward neural networks","volume-title":"Proc. 13th Int. Conf. Artif. Intell. Statist.","author":"Glorot"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1109\/ICIVC.2018.8492796"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2018.2889307"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2910571"}],"container-title":["IEEE Transactions on Geoscience and Remote Sensing"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/36\/10006360\/10296953.pdf?arnumber=10296953","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,2]],"date-time":"2024-03-02T11:06:50Z","timestamp":1709377610000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10296953\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"references-count":57,"URL":"https:\/\/doi.org\/10.1109\/tgrs.2023.3327780","relation":{},"ISSN":["0196-2892","1558-0644"],"issn-type":[{"value":"0196-2892","type":"print"},{"value":"1558-0644","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023]]}}}