{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:44:36Z","timestamp":1742805876762,"version":"3.37.3"},"reference-count":49,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"12","license":[{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61801315"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"Singapore\u2013China NRF-NSFC","doi-asserted-by":"publisher","award":["NRF2016NRF-NSFC001-111"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013314","name":"Higher Education Discipline Innovation Project","doi-asserted-by":"publisher","award":["B21044"],"id":[{"id":"10.13039\/501100013314","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Cybern."],"published-print":{"date-parts":[[2022,12]]},"DOI":"10.1109\/tcyb.2021.3131285","type":"journal-article","created":{"date-parts":[[2021,12,17]],"date-time":"2021-12-17T20:31:13Z","timestamp":1639773073000},"page":"13458-13471","source":"Crossref","is-referenced-by-count":18,"title":["Robust Traffic Prediction From Spatial\u2013Temporal Data Based on Conditional Distribution Learning"],"prefix":"10.1109","volume":"52","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-2405-0323","authenticated-orcid":false,"given":"Zeng","family":"Zeng","sequence":"first","affiliation":[{"name":"Agency for Science, Technology and Research (A*STAR), Institute for Infocomm Research, Singapore"}]},{"given":"Wei","family":"Zhao","sequence":"additional","affiliation":[{"name":"College of Computer Science, Sichuan University, Chengdu, China"}]},{"given":"Peisheng","family":"Qian","sequence":"additional","affiliation":[{"name":"Agency for Science, Technology and Research (A*STAR), Institute for Infocomm Research, Singapore"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1129-0213","authenticated-orcid":false,"given":"Yingjie","family":"Zhou","sequence":"additional","affiliation":[{"name":"College of Computer Science, Sichuan University, Chengdu, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4403-825X","authenticated-orcid":false,"given":"Ziyuan","family":"Zhao","sequence":"additional","affiliation":[{"name":"Agency for Science, Technology and Research (A*STAR), Institute for Infocomm Research, Singapore"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1389-0148","authenticated-orcid":false,"given":"Cen","family":"Chen","sequence":"additional","affiliation":[{"name":"Agency for Science, Technology and Research (A*STAR), Institute for Infocomm Research, Singapore"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0872-3276","authenticated-orcid":false,"given":"Cuntai","family":"Guan","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering, Nanyang Technological University, Singapore"}]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.51"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2655445"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.573"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33014424"},{"key":"ref31","first-page":"1","article-title":"Graph attention networks","author":"veli? kovi?","year":"2018","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.576"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.237"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1145\/2733373.2806328"},{"key":"ref35","article-title":"Multilabel distribution learning based on multioutput regression and manifold learning","author":"tan","year":"2020","journal-title":"IEEE Trans Cybern"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2019.2947040"},{"key":"ref28","first-page":"5165","article-title":"Link prediction based on graph neural networks","author":"zhang","year":"2018","journal-title":"Advances in Neural IInformation Processing Systems"},{"key":"ref27","first-page":"4800","article-title":"Hierarchical graph representation learning with differentiable pooling","author":"ying","year":"2018","journal-title":"Advances in Neural IInformation Processing Systems"},{"key":"ref29","first-page":"1024","article-title":"Inductive representation learning on large graphs","author":"hamilton","year":"2017","journal-title":"Advances in neural information processing systems"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/505"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1145\/2629592"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.3390\/app10041509"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2020.3000929"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2020.2975134"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/362"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2019.2928945"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1145\/3132847.3132967"},{"key":"ref25","first-page":"1","article-title":"Semi-supervised classification with graph convolutional networks","author":"kipf","year":"2017","journal-title":"Proc 5th Int Conf Learn Represent"},{"key":"ref10","article-title":"WaveNet: A generative model for raw audio","author":"oord","year":"2016","journal-title":"arXiv 1609 03499"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2020.2978386"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00554"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v32i1.11836"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v32i1.12328"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-04167-0_33"},{"key":"ref15","first-page":"1","article-title":"Diffusion convolutional recurrent neural network: Data-driven traffic forecasting","author":"li","year":"2018","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref16","first-page":"8778","article-title":"Generalized cross entropy loss for training deep neural networks with noisy labels","author":"zhang","year":"2018","journal-title":"Advances in Neural IInformation Processing Systems"},{"journal-title":"Analog-to-Digital Conversion","year":"2020","author":"rowlands","key":"ref17"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/APSIPA.2017.8282034"},{"key":"ref19","article-title":"GaAN: Gated attention networks for learning on large and spatiotemporal graphs","author":"zhang","year":"2018","journal-title":"arXiv 1803 07294"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1145\/3385414"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.3301485"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2019.08.002"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2017.08.044"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1145\/3343031.3350586"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.ipm.2019.102097"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2021.01.146"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2019\/264"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2017\/366"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i1.16145"},{"key":"ref48","article-title":"Feature encoding with autoencoders for weakly supervised anomaly detection","author":"zhou","year":"2021","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2020.106139"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v32i1.11691"},{"key":"ref44","article-title":"Incrementally improving graph WaveNet performance on traffic prediction","author":"shleifer","year":"2019","journal-title":"arXiv 1912 07390"},{"key":"ref43","first-page":"2261","article-title":"Densely connected convolutional networks","author":"huang","year":"2017","journal-title":"Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)"}],"container-title":["IEEE Transactions on Cybernetics"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6221036\/9954937\/09655446.pdf?arnumber=9655446","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,26]],"date-time":"2022-12-26T19:08:30Z","timestamp":1672081710000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9655446\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12]]},"references-count":49,"journal-issue":{"issue":"12"},"URL":"https:\/\/doi.org\/10.1109\/tcyb.2021.3131285","relation":{},"ISSN":["2168-2267","2168-2275"],"issn-type":[{"type":"print","value":"2168-2267"},{"type":"electronic","value":"2168-2275"}],"subject":[],"published":{"date-parts":[[2022,12]]}}}