{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T20:23:18Z","timestamp":1740169398124,"version":"3.37.3"},"reference-count":43,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"3","license":[{"start":{"date-parts":[[2014,3,1]],"date-time":"2014-03-01T00:00:00Z","timestamp":1393632000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"}],"funder":[{"DOI":"10.13039\/501100004329","name":"Javna Agencija za Raziskovalno Dejavnost RS","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004329","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Cybern."],"published-print":{"date-parts":[[2014,3]]},"DOI":"10.1109\/tcyb.2013.2255983","type":"journal-article","created":{"date-parts":[[2013,4,29]],"date-time":"2013-04-29T14:03:54Z","timestamp":1367244234000},"page":"355-365","source":"Crossref","is-referenced-by-count":31,"title":["Online Discriminative Kernel Density Estimator With Gaussian Kernels"],"prefix":"10.1109","volume":"44","author":[{"given":"Matej","family":"Kristan","sequence":"first","affiliation":[]},{"given":"Ales","family":"Leonardis","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"journal-title":"LIBSVM A library for support vector machines","year":"2001","author":"chang","key":"ref39"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1093\/biomet\/78.2.263"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511801389"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2009.09.010"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2010.03.012"},{"key":"ref30","doi-asserted-by":"crossref","first-page":"771","DOI":"10.1016\/0031-3203(93)90130-O","article-title":"Adaptive mixture density estimation","volume":"26","author":"priebe","year":"1993","journal-title":"Pattern Recognit"},{"journal-title":"A general method for approximating nonlinear transformations of probability distributions","year":"1996","author":"julier","key":"ref37"},{"journal-title":"A user's guide to measure theoretic probability","year":"2002","author":"pollard","key":"ref36"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1002\/0471221279"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/0031-3203(96)00027-1"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2012.06.006"},{"journal-title":"mcpIncSVM?Incremental SVM learning with multiclass support and probabilistic output","year":"2011","author":"diehl","key":"ref40"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TSMCB.2009.2020688"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2011.03.019"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4899-4493-1"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/S0167-9473(97)00032-7"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TSMCB.2009.2034732"},{"key":"ref16","first-page":"505","author":"goldberger","year":"2005","journal-title":"Advances in neural information processing systems"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TNN.2010.2040835"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1016\/S0893-6080(98)00051-3"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2003.1233899"},{"key":"ref28","doi-asserted-by":"crossref","first-page":"1186","DOI":"10.1109\/TPAMI.2007.70771","article-title":"Sequential kernel density approximation and its application to real-time visual tracking","volume":"30","author":"han","year":"2008","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2004.1273970"},{"key":"ref27","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1117\/12.601724","article-title":"Highly efficient incremental estimation of Gaussian mixture models for online data stream clustering","volume":"5803","author":"song","year":"2005","journal-title":"Proc SPIE"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TSMCB.2006.872273"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/0031-3203(96)00028-3"},{"journal-title":"Time-evolving adaptive mixtures","year":"2005","author":"szewczyk","key":"ref29"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1214\/aoms\/1177704472"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2003.08.004"},{"key":"ref7","first-page":"849","author":"vincent","year":"2003","journal-title":"Advances in neural information processing systems"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/34.990138"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2008.07.010"},{"key":"ref1","doi-asserted-by":"crossref","DOI":"10.1002\/0471721182","author":"mclachlan","year":"2000","journal-title":"Finite Mixture Models"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TSMCB.2004.828199"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2007.09.009"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2007.09.013"},{"journal-title":"UCI Machine Learning Repository","year":"2007","author":"asuncion","key":"ref42"},{"key":"ref24","first-page":"1","article-title":"Incremental learning of mixture models for simultaneous estimation of class distribution and inter-class decision boundaries","author":"mansjur","year":"2008","journal-title":"Proc Int Conf Pattern Recognit"},{"journal-title":"DOGMA?Discriminative online (good?) Matlab algorithms","year":"2011","author":"orabona","key":"ref41"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2003.1223991"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.5244\/C.19.59"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2007.05.005"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2009.09.021"}],"container-title":["IEEE Transactions on Cybernetics"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6221036\/6739112\/06509925.pdf?arnumber=6509925","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T11:30:54Z","timestamp":1641987054000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/6509925\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,3]]},"references-count":43,"journal-issue":{"issue":"3"},"URL":"https:\/\/doi.org\/10.1109\/tcyb.2013.2255983","relation":{},"ISSN":["2168-2267","2168-2275"],"issn-type":[{"type":"print","value":"2168-2267"},{"type":"electronic","value":"2168-2275"}],"subject":[],"published":{"date-parts":[[2014,3]]}}}