{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,10]],"date-time":"2024-05-10T18:10:19Z","timestamp":1715364619943},"reference-count":63,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"5","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"National Key Research and Development Program of China","award":["2020AAA0106900"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["U19B2037","62376218","61902321"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Natural Science Basic Research Program of Shaanxi","award":["2022JC-DW-08"]},{"DOI":"10.13039\/501100018594","name":"Fundamental Research Funds for Central Universities of China","doi-asserted-by":"publisher","award":["G2021KY05104"],"id":[{"id":"10.13039\/501100018594","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Circuits Syst. Video Technol."],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1109\/tcsvt.2023.3325651","type":"journal-article","created":{"date-parts":[[2023,10,18]],"date-time":"2023-10-18T18:02:10Z","timestamp":1697652130000},"page":"3451-3464","source":"Crossref","is-referenced-by-count":1,"title":["New Insights on Relieving Task-Recency Bias for Online Class Incremental Learning"],"prefix":"10.1109","volume":"34","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8710-5520","authenticated-orcid":false,"given":"Guoqiang","family":"Liang","sequence":"first","affiliation":[{"name":"National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology and the School of Computer Science, Northwestern Polytechnical University, Xi’an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3001-9573","authenticated-orcid":false,"given":"Zhaojie","family":"Chen","sequence":"additional","affiliation":[{"name":"National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology and the School of Computer Science, Northwestern Polytechnical University, Xi’an, China"}]},{"given":"Zhaoqiang","family":"Chen","sequence":"additional","affiliation":[{"name":"Key Laboratory of Big Data Storage and Management and the School of Computer Science, Northwestern Polytechnical University, Xi’an, China"}]},{"given":"Shiyu","family":"Ji","sequence":"additional","affiliation":[{"name":"National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology and the School of Software Engineering, Northwestern Polytechnical University, Xi’an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2977-8057","authenticated-orcid":false,"given":"Yanning","family":"Zhang","sequence":"additional","affiliation":[{"name":"National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology and the School of Computer Science, Northwestern Polytechnical University, Xi’an, China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2021.10.021"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2020.3005311"},{"key":"ref3","first-page":"1","article-title":"Task-aware information routing from common representation space in lifelong learning","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Bhat"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2022.3213473"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2021.3088545"},{"key":"ref6","article-title":"Deep class-incremental learning: A survey","author":"Zhou","year":"2023","journal-title":"arXiv:2302.03648"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2020.3035890"},{"key":"ref8","article-title":"Three scenarios for continual learning","author":"van de Ven","year":"2019","journal-title":"arXiv:1904.07734"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58536-5_31"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2022.3219605"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00729"},{"key":"ref12","article-title":"New insights on reducing abrupt representation change in online continual learning","author":"Caccia","year":"2022","journal-title":"arXiv:2203.03798"},{"key":"ref13","article-title":"Efficient lifelong learning with A-GEM","author":"Chaudhry","year":"2018","journal-title":"arXiv:1812.00420"},{"key":"ref14","first-page":"14374","article-title":"Meta-consolidation for continual learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"33","author":"Joseph"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2022.3196092"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01252-6_33"},{"key":"ref17","first-page":"11849","article-title":"Online continual learning with maximally interfered retrieval","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Aljundi"},{"key":"ref18","article-title":"Online coreset selection for rehearsal-based continual learning","author":"Yoon","year":"2021","journal-title":"arXiv:2106.01085"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1145\/1553374.1553380"},{"key":"ref20","article-title":"Learning multiple layers of features from tiny images","author":"Krizhevsky","year":"2009"},{"key":"ref21","first-page":"1","article-title":"Matching networks for one shot learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"29","author":"Vinyals"},{"key":"ref22","first-page":"3987","article-title":"Continual learning through synaptic intelligence","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Zenke"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.1611835114"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01219-9_9"},{"key":"ref25","first-page":"1","article-title":"Gradient episodic memory for continual learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"30","author":"Lopez-Paz"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00701"},{"key":"ref27","article-title":"Regularization shortcomings for continual learning","author":"Lesort","year":"2019","journal-title":"arXiv:1912.03049"},{"key":"ref28","first-page":"1","article-title":"Lifelong learning with dynamically expandable network","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Yoon"},{"key":"ref29","first-page":"1","article-title":"A neural Dirichlet process mixture model for task-free continual learning","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Lee"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2019.09.010"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00810"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01360"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i11.17159"},{"key":"ref34","first-page":"1","article-title":"Gradient based sample selection for online continual learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Aljundi"},{"key":"ref35","article-title":"On tiny episodic memories in continual learning","author":"Chaudhry","year":"2019","journal-title":"arXiv:1902.10486"},{"key":"ref36","first-page":"1195","article-title":"Consistency is the key to further mitigating catastrophic forgetting in continual learning","volume-title":"Proc. Conf. Lifelong Learn. Agents","author":"Bhat"},{"key":"ref37","first-page":"8109","article-title":"Online continual learning through mutual information maximization","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Guo"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW53098.2021.00398"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00046"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00088"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01258-8_15"},{"key":"ref42","article-title":"Batch-level experience replay with review for continual learning","author":"Mai","year":"2020","journal-title":"arXiv:2007.05683"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00264"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01168"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00686"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.48550\/arXiv.1503.02531"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2017.2773081"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00092"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01322"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01394"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.324"},{"key":"ref53","volume-title":"Educational Psychology","author":"Seifert","year":"2009"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.3200\/JMBR.36.2.212-224"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2021.3057446"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.308"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00396"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00067"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00065"},{"key":"ref60","article-title":"CPR: Classifier-projection regularization for continual learning","author":"Cha","year":"2020","journal-title":"arXiv:2006.07326"},{"key":"ref61","first-page":"15920","article-title":"Dark experience for general continual learning: A strong, simple baseline","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"33","author":"Buzzega"},{"key":"ref62","first-page":"1","article-title":"Deep batch active learning by diverse, uncertain gradient lower bounds","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Ash"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1145\/3472291"}],"container-title":["IEEE Transactions on Circuits and Systems for Video Technology"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/76\/10527423\/10287323.pdf?arnumber=10287323","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,10]],"date-time":"2024-05-10T17:36:17Z","timestamp":1715362577000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10287323\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":63,"journal-issue":{"issue":"5"},"URL":"https:\/\/doi.org\/10.1109\/tcsvt.2023.3325651","relation":{},"ISSN":["1051-8215","1558-2205"],"issn-type":[{"value":"1051-8215","type":"print"},{"value":"1558-2205","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,5]]}}}