{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T21:57:12Z","timestamp":1740175032361,"version":"3.37.3"},"reference-count":27,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Comput. Imaging"],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/tci.2024.3414273","type":"journal-article","created":{"date-parts":[[2024,6,26]],"date-time":"2024-06-26T18:09:42Z","timestamp":1719425382000},"page":"953-968","source":"Crossref","is-referenced-by-count":3,"title":["Sequential Experimental Design for X-Ray CT Using Deep Reinforcement Learning"],"prefix":"10.1109","volume":"10","author":[{"ORCID":"https:\/\/orcid.org\/0009-0001-8245-2363","authenticated-orcid":false,"given":"Tianyuan","family":"Wang","sequence":"first","affiliation":[{"name":"Computational Imaging, Centrum Wiskunde en Informatica (CWI), Amsterdam, The Netherlands"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8763-5177","authenticated-orcid":false,"given":"Felix","family":"Lucka","sequence":"additional","affiliation":[{"name":"Computational Imaging, Centrum Wiskunde en Informatica (CWI), Amsterdam, The Netherlands"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8794-6426","authenticated-orcid":false,"given":"Tristan","family":"van Leeuwen","sequence":"additional","affiliation":[{"name":"Computational Imaging, Centrum Wiskunde en Informatica (CWI), Amsterdam, The Netherlands"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1088\/0266-5611\/7\/6\/010"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.14232\/actacyb.20.1.2011.12"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1137\/17M1143733"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611970654.ch1"},{"key":"ref5","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1111\/insr.12107","article-title":"Fully Bayesian optimal experimental design: A review","volume":"84","author":"Ryan","year":"2016","journal-title":"Int. Stat. Rev."},{"key":"ref6","first-page":"261","article-title":"End-to-end sequential sampling and reconstruction for MRI","volume-title":"Proc. Mach. Learn. Health","author":"Yin","year":"2021"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1088\/1361-6420\/ac01a4"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.cviu.2012.07.005"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.nimb.2013.08.077"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-19867-0_31"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1137\/21M1409330"},{"author":"Barbano","key":"ref12","article-title":"Bayesian experimental design for computed tomography with the linearised deep image prior"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1038\/srep19135"},{"key":"ref14","first-page":"257","article-title":"Task-based trajectories in iteratively reconstructed interventional cone-beam CT","volume-title":"Proc. 12th Int. Meet. Fully Three-Dimensional Image Reconstr. Radiol. Nucl. Med.","author":"Stayman","year":"2013"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TCI.2021.3102824"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.ndteint.2022.102768"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.3934\/ipi.2021045"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611972344"},{"volume-title":"Computed Tomography: Algorithms, Insight, and Just Enough Theory","year":"2021","author":"Hansen","key":"ref19"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-74658-4_16"},{"volume-title":"Reinforcement Learning: An Introduction","year":"2018","author":"Sutton","key":"ref21"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1137\/110834640"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/97.847361"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP49357.2023.10097185"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.ultramic.2015.05.002"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1364\/OE.24.025129"},{"article-title":"Adam: A method for stochastic optimization","year":"2014","author":"Kingma","key":"ref27"}],"container-title":["IEEE Transactions on Computational Imaging"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/6745852\/10398876\/10572344.pdf?arnumber=10572344","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T06:17:45Z","timestamp":1725689865000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10572344\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":27,"URL":"https:\/\/doi.org\/10.1109\/tci.2024.3414273","relation":{},"ISSN":["2333-9403","2334-0118","2573-0436"],"issn-type":[{"type":"electronic","value":"2333-9403"},{"type":"electronic","value":"2334-0118"},{"type":"print","value":"2573-0436"}],"subject":[],"published":{"date-parts":[[2024]]}}}