{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,4]],"date-time":"2024-08-04T21:20:29Z","timestamp":1722806429851},"reference-count":55,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"am","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/100000181","name":"Air Force Office of Scientific Research","doi-asserted-by":"publisher","award":["FA9550-19-1-0284"],"id":[{"id":"10.13039\/100000181","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000006","name":"Office of Naval Research","doi-asserted-by":"publisher","award":["N00014-18-1-2068"],"id":[{"id":"10.13039\/100000006","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100008982","name":"National Science Foundation","doi-asserted-by":"publisher","award":["ECCS-1809234"],"id":[{"id":"10.13039\/501100008982","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100009917","name":"U.S. Naval Research Laboratory","doi-asserted-by":"publisher","award":["N00173-21-1-G007"],"id":[{"id":"10.13039\/100009917","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Comput. Imaging"],"published-print":{"date-parts":[[2022]]},"DOI":"10.1109\/tci.2022.3189217","type":"journal-article","created":{"date-parts":[[2022,7,8]],"date-time":"2022-07-08T19:26:21Z","timestamp":1657308381000},"page":"609-625","source":"Crossref","is-referenced-by-count":5,"title":["Unrolled Wirtinger Flow With Deep Decoding Priors for Phaseless Imaging"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9477-2850","authenticated-orcid":false,"given":"Samia","family":"Kazemi","sequence":"first","affiliation":[{"name":"Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2623-3462","authenticated-orcid":false,"given":"Bariscan","family":"Yonel","sequence":"additional","affiliation":[{"name":"Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0912-0848","authenticated-orcid":false,"given":"Birsen","family":"Yazici","sequence":"additional","affiliation":[{"name":"Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/TIT.2019.2891653"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TIT.2015.2399924"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/ISIT.2015.7282737"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1214\/16-AOS1443"},{"key":"ref5","first-page":"982","article-title":"Hadamard wirtinger flow for sparse phase retrieval","volume-title":"Proc. Int. Conf. Artif. Intell. Statist.","author":"Wu","year":"2021"},{"key":"ref6","first-page":"739","article-title":"Solving random quadratic systems of equations is nearly as easy as solving linear systems","volume":"28","author":"Chen","year":"2015","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.cam.2019.01.009"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2020.3007967"},{"key":"ref9","first-page":"9136","article-title":"Phase retrieval under a generative prior","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Hand","year":"2018"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/JSEN.2020.3018751"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1002\/cpa.22155"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/JSEN.2020.3018751"},{"key":"ref13","first-page":"14832","article-title":"Algorithmic guarantees for inverse imaging with untrained network priors","volume":"32","author":"Jagatap","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"141","key":"ref14","first-page":"1","article-title":"A nonconvex approach for phase retrieval: Reshaped wirtinger flow and incremental algorithms","volume":"18","author":"Zhang","year":"2017","journal-title":"J. Mach. Learn. Res."},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1002\/cpa.21432"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1137\/151005099"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TIT.2018.2847695"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1093\/imaiai\/iaz020"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2019.2904918"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1137\/20M1388061"},{"key":"ref21","first-page":"1734","article-title":"Linear spectral estimators and an application to phase retrieval","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Ghods","year":"2018"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/TIT.2017.2756858"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/TCI.2019.2948732"},{"key":"ref24","first-page":"9446","article-title":"Deep image prior","volume-title":"Proc. IEEE Conf. Comput. Vis. Pattern Recognit.","author":"Ulyanov","year":"2018"},{"key":"ref25","first-page":"1","article-title":"Deep decoder: Concise image representations from untrained non-convolutional networks","volume-title":"Proc. Int. Conf. Learn. Representations","author":"Heckel","year":"2019"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2020.3016905"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58577-8_26"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01038"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/IEEECONF51394.2020.9443438"},{"key":"ref30","first-page":"3501","article-title":"prDeep: Robust phase retrieval with a flexible deep network","volume-title":"Proc. 35th Int. Conf. Mach. Learn.","volume":"80","author":"Metzler","year":"2018"},{"key":"ref31","first-page":"1","article-title":"Unsupervised representation learning with deep convolutional generative adversarial networks","volume-title":"Proc. Int. Conf. Learn. Representations","author":"Radford","year":"2016"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1137\/19M1238599"},{"key":"ref33","article-title":"Personal computer shallow water acoustic tool-set (PC SWAT) 7.0: Low frequency propagation and scattering","author":"Sammelmann","year":"2002"},{"key":"ref34","first-page":"1867","article-title":"Solving most systems of random quadratic equations","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Wang","year":"2017"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1364\/AO.21.002758"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2015.2448516"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1088\/0266-5611\/21\/1\/004"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1088\/1361-6420\/aba5ed"},{"key":"ref39","first-page":"252","article-title":"Phase retrieval meets statistical learning theory: A flexible convex relaxation","volume-title":"Proc. Artif. Intell. Statist.","author":"Bahmani","year":"2017"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/TIT.2018.2800768"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.4310\/CMS.2018.v16.n7.a13"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/RADAR.2017.7944481"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/JSTSP.2017.2784181"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1049\/iet-rsn.2018.5228"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/RADAR.2019.8835492"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/RADAR42522.2020.9114796"},{"key":"ref47","first-page":"1","article-title":"Spectral normalization for generative adversarial networks","volume-title":"Proc. Int. Conf. Learn. Representations","author":"Miyato","year":"2018"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2017.2656844"},{"key":"ref49","article-title":"Spectral norm regularization for improving the generalizability of deep learning","author":"Yoshida","year":"2017"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/ICCPHOT.2017.7951483"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/36.951089"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/SSAP.2000.870220"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1137\/16M1102884"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2662206"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1109\/TCI.2021.3118944"}],"container-title":["IEEE Transactions on Computational Imaging"],"original-title":[],"link":[{"URL":"https:\/\/ieeexplore.ieee.org\/ielam\/6745852\/9679468\/9822202-aam.pdf","content-type":"application\/pdf","content-version":"am","intended-application":"syndication"},{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6745852\/9679468\/09822202.pdf?arnumber=9822202","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T04:23:24Z","timestamp":1706761404000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9822202\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"references-count":55,"URL":"https:\/\/doi.org\/10.1109\/tci.2022.3189217","relation":{},"ISSN":["2333-9403","2334-0118","2573-0436"],"issn-type":[{"value":"2333-9403","type":"electronic"},{"value":"2334-0118","type":"electronic"},{"value":"2573-0436","type":"print"}],"subject":[],"published":{"date-parts":[[2022]]}}}