{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,10]],"date-time":"2024-08-10T00:23:59Z","timestamp":1723249439196},"reference-count":49,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"4","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100000266","name":"UK Engineering and Physical Sciences Research Council","doi-asserted-by":"publisher","award":["EP\/T021063\/1"],"id":[{"id":"10.13039\/501100000266","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Cogn. Commun. Netw."],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1109\/tccn.2024.3378215","type":"journal-article","created":{"date-parts":[[2024,3,18]],"date-time":"2024-03-18T20:20:05Z","timestamp":1710793205000},"page":"1535-1550","source":"Crossref","is-referenced-by-count":0,"title":["Federated Distillation in Massive MIMO Networks: Dynamic Training, Convergence Analysis, and Communication Channel-Aware Learning"],"prefix":"10.1109","volume":"10","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1810-1646","authenticated-orcid":false,"given":"Yuchen","family":"Mu","sequence":"first","affiliation":[{"name":"Institute for Digital Communications, The University of Edinburgh, Edinburgh, EH9 3FG, U.K"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8535-7663","authenticated-orcid":false,"given":"Navneet","family":"Garg","sequence":"additional","affiliation":[{"name":"Institute for Digital Communications, The University of Edinburgh, Edinburgh, EH9 3FG, U.K"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7636-1246","authenticated-orcid":false,"given":"Tharmalingam","family":"Ratnarajah","sequence":"additional","affiliation":[{"name":"Institute for Digital Communications, The University of Edinburgh, Edinburgh, EH9 3FG, U.K"}]}],"member":"263","reference":[{"key":"ref1","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","volume-title":"Proc. Artif. Intell. Statist.","author":"McMahan"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2021.3124599"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1145\/3338501.3357371"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1145\/3338501.3357370"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/ICC.2019.8761267"},{"key":"ref6","first-page":"1","article-title":"Federated learning: Strategies for improving communication efficiency","volume-title":"Proc. Workshop Priv. Multi-Party Mach. Learn.","author":"Konecn\u00fd"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.48550\/arXiv.1503.02531"},{"key":"ref8","article-title":"Communication-efficient on-device machine learning: Federated distillation and augmentation under non-IID private data","author":"Jeong","year":"2018","journal-title":"arXiv:1811.11479"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/MCOM.2019.1900271"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2020.2975749"},{"key":"ref11","article-title":"Towards ubiquitous AI in 6G with federated learning","author":"Xiao","year":"2020","journal-title":"arXiv:2004.13563"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2010.092810.091092"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TIT.2014.2354403"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TCOMM.2013.020413.110848"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2021.3129371"},{"key":"ref16","first-page":"2351","article-title":"Ensemble distillation for robust model fusion in federated learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"33","author":"Lin"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-85899-5_2"},{"key":"ref18","article-title":"FedMD: Heterogenous federated learning via model distillation","author":"Li","year":"2019","journal-title":"arXiv:1910.03581"},{"key":"ref19","first-page":"12878","article-title":"Data-free knowledge distillation for heterogeneous federated learning","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Zhu"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1007\/s10489-022-04431-1"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2020.3007407"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-022-29763-x"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/LCOMM.2020.3003693"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/PIMRC.2019.8904164"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP40776.2020.9053448"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/ICC45855.2022.9839214"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/TMC.2021.3070013"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/TNSE.2021.3081748"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/HPCC-SmartCity-DSS50907.2020.00129"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TNSE.2022.3196463"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2021.3055679"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2021.3118346"},{"key":"ref33","article-title":"On the convergence of FedAVG on non-IID data","author":"Li","year":"2019","journal-title":"arXiv:1907.02189"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00919"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33015693"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TVT.2016.2594031"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2015.2443040"},{"volume-title":"Imagenette","year":"2022","author":"Howard","key":"ref38"},{"volume-title":"Learning multiple layers of features from tiny images","year":"2009","author":"Krizhevsky","key":"ref39"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"ref41","first-page":"215","article-title":"An analysis of single-layer networks in unsupervised feature learning","volume-title":"Proc. 14th Int. Conf. Artif. Intell. Statist.","author":"Coates"},{"key":"ref42","article-title":"Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms","author":"Xiao","year":"2017","journal-title":"arXiv:1708.07747"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"ref44","article-title":"Measuring the effects of non-identical data distribution for federated visual classification","author":"Hsu","year":"2019","journal-title":"arXiv:1909.06335"},{"key":"ref45","article-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014","journal-title":"arXiv:1412.6980"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00474"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00716"},{"key":"ref49","first-page":"8026","article-title":"PyTorch: An imperative style, high-performance deep learning library","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Paszke"}],"container-title":["IEEE Transactions on Cognitive Communications and Networking"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6687307\/10629642\/10474173.pdf?arnumber=10474173","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T05:51:45Z","timestamp":1723182705000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10474173\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":49,"journal-issue":{"issue":"4"},"URL":"https:\/\/doi.org\/10.1109\/tccn.2024.3378215","relation":{},"ISSN":["2332-7731","2372-2045"],"issn-type":[{"type":"electronic","value":"2332-7731"},{"type":"electronic","value":"2372-2045"}],"subject":[],"published":{"date-parts":[[2024,8]]}}}