{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T21:06:06Z","timestamp":1740171966628,"version":"3.37.3"},"reference-count":61,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"3","license":[{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62102066"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Sichuan Province Selected Funding for Postdoctoral Research Projects","award":["TB2022032"]},{"name":"PCL Future Greater-Bay Area Network Facilities for Large-Scale Experiments and Applications","award":["LZC0019"]},{"name":"Open Research Projects of Zhejiang Lab","award":["2022QA0AB02"]},{"name":"RGC RIF","award":["R6021-20"]},{"name":"RGC GRF","award":["16209120","16200221"]},{"name":"Young Elite Scientists Sponsorship Program"},{"name":"CAST","award":["2022QNRC001"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Cloud Comput."],"published-print":{"date-parts":[[2023,7,1]]},"DOI":"10.1109\/tcc.2023.3254587","type":"journal-article","created":{"date-parts":[[2023,3,10]],"date-time":"2023-03-10T18:25:57Z","timestamp":1678472757000},"page":"3055-3069","source":"Crossref","is-referenced-by-count":30,"title":["HFedMS: Heterogeneous Federated Learning With Memorable Data Semantics in Industrial Metaverse"],"prefix":"10.1109","volume":"11","author":[{"given":"Shenglai","family":"Zeng","sequence":"first","affiliation":[{"name":"Yingcai Honors College and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2796-039X","authenticated-orcid":false,"given":"Zonghang","family":"Li","sequence":"additional","affiliation":[{"name":"School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5219-1780","authenticated-orcid":false,"given":"Hongfang","family":"Yu","sequence":"additional","affiliation":[{"name":"School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China"}]},{"given":"Zhihao","family":"Zhang","sequence":"additional","affiliation":[{"name":"Yingcai Honors College and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China"}]},{"given":"Long","family":"Luo","sequence":"additional","affiliation":[{"name":"School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2083-9105","authenticated-orcid":false,"given":"Bo","family":"Li","sequence":"additional","affiliation":[{"name":"Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7442-7416","authenticated-orcid":false,"given":"Dusit","family":"Niyato","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering, Nanyang Technological University, Singapore"}]}],"member":"263","reference":[{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.587"},{"key":"ref57","first-page":"1","article-title":"Constrained K-means clustering","volume":"20","author":"bradley","year":"2000"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ICCD46524.2019.00038"},{"key":"ref56","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","author":"mcmahan","year":"2017","journal-title":"Proc 20th Int Conf Artif Intell Statist"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.5244\/C.29.31"},{"key":"ref59","first-page":"2333","article-title":"Learning semantic representations using convolutional neural networks for web search","author":"huang","year":"2013","journal-title":"Proc ACM Int Conf Inf Knowl Manag"},{"key":"ref14","first-page":"177","article-title":"Comparing biases for minimal network construction with back-propagation","author":"hanson","year":"1988","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.50"},{"key":"ref53","first-page":"3366","article-title":"A continual learning survey: Defying forgetting in classification tasks","volume":"44","author":"de lange","year":"2022","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58517-4_41"},{"key":"ref11","first-page":"1","article-title":"Communication-efficient on-device machine learning: Federated distillation and augmentation under non-IID private data","author":"jeong","year":"2018","journal-title":"Proc Int Conf Neural Inf Process Syst 2nd Workshop Mach Learn Phone Consum Devices"},{"key":"ref55","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1109\/TNNLS.2015.2496964","article-title":"-norm low-rank matrix decomposition by neural networks and mollifiers","volume":"27","author":"liu","year":"2016","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46493-0_40"},{"key":"ref54","first-page":"1058","article-title":"1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs","author":"seide","year":"2014","journal-title":"Proc 15th Annu Conf Int Speech Commun Assoc"},{"key":"ref17","first-page":"2082","article-title":"Learning structured sparsity in deep neural networks","author":"wen","year":"2016","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref16","first-page":"1135","article-title":"Learning both weights and connections for efficient neural network","author":"han","year":"2015","journal-title":"Proc Int Conf Neural Inf Process"},{"article-title":"Compressing deep convolutional networks using vector quantization","year":"2014","author":"gong","key":"ref19"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.327"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-020-17866-2"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/IROS45743.2020.9341460"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2021.04.112"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1016\/j.simpa.2022.100282"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2019.2936565"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/ICDCS47774.2020.00026"},{"key":"ref42","first-page":"1","article-title":"Adaptive federated optimization","author":"reddi","year":"2021","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM41043.2020.9155494"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2022.3161943"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-00126-0_34"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/BigData50022.2020.9378161"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2022.3160193"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/S1364-6613(99)01294-2"},{"key":"ref9","first-page":"561","article-title":"A survey of 5G emerging wireless technologies featuring LoRaWAN, SigFox, NB-IoT and LTE-M","author":"aldahdouh","year":"2019","journal-title":"Proc Int Conf Wireless Commun Signal Process Netw"},{"article-title":"When Internet of Things meets metaverse: Convergence of physical and cyber worlds","year":"2022","author":"li","key":"ref4"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1561\/2200000083"},{"article-title":"Federated learning with non-IID data","year":"2018","author":"zhao","key":"ref6"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/Blockchain55522.2022.00020"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-60548-3_15"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.011.2000604"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1145\/3460427"},{"key":"ref37","first-page":"429","article-title":"Federated optimization in heterogeneous networks","author":"li","year":"2020","journal-title":"Proc Mach Learn Syst"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.117.2200065"},{"article-title":"Slicing4Meta: An intelligent integration framework with multi-dimensional network resources for metaverse-as-a-service in web 3.0","year":"2022","author":"liu","key":"ref31"},{"article-title":"Attention-aware resource allocation and QoE analysis for metaverse xURLLC services","year":"2022","author":"du","key":"ref30"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/TSC.2020.3044043"},{"article-title":"Enabling AI-generated content (AIGC) services in wireless edge networks","year":"2023","author":"du","key":"ref32"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/MMUL.2018.023121167"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2022.3221119"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2019.8803001"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/VCIP.2018.8698609"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2022.3201082"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.298"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/OJCS.2022.3188249"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.5772\/intechopen.99114"},{"key":"ref20","first-page":"1","article-title":"Towards the limit of network quantization","author":"choi","year":"2017","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref22","first-page":"1","article-title":"Deep gradient compression: Reducing the communication bandwidth for distributed training","author":"lin","year":"2018","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref21","first-page":"3123","article-title":"BinaryConnect: Training deep neural networks with binary weights during propagations","author":"courbariaux","year":"2015","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/WF-IoT54382.2022.10152245"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.23919\/JCIN.2022.9815195"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.128.2200338"},{"key":"ref60","first-page":"5972","article-title":"No fear of heterogeneity: Classifier calibration for federated learning with non-IID data","author":"luo","year":"2021","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref61","first-page":"1","article-title":"LEAF: A benchmark for federated settings","author":"caldas","year":"2019","journal-title":"Proc Int Conf Neural Inf Process"}],"container-title":["IEEE Transactions on Cloud Computing"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6245519\/10241247\/10065509.pdf?arnumber=10065509","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,6]],"date-time":"2024-06-06T17:08:13Z","timestamp":1717693693000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10065509\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,1]]},"references-count":61,"journal-issue":{"issue":"3"},"URL":"https:\/\/doi.org\/10.1109\/tcc.2023.3254587","relation":{},"ISSN":["2168-7161","2372-0018"],"issn-type":[{"type":"electronic","value":"2168-7161"},{"type":"electronic","value":"2372-0018"}],"subject":[],"published":{"date-parts":[[2023,7,1]]}}}