{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,12]],"date-time":"2024-08-12T13:53:05Z","timestamp":1723470785191},"reference-count":75,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"10","license":[{"start":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T00:00:00Z","timestamp":1569888000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T00:00:00Z","timestamp":1569888000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T00:00:00Z","timestamp":1569888000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"JSPS KAKENHI","award":["16K12487"]},{"name":"MIC\/SCOPE","award":["#172107101"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Biomed. Eng."],"published-print":{"date-parts":[[2019,10]]},"DOI":"10.1109\/tbme.2019.2895663","type":"journal-article","created":{"date-parts":[[2019,1,29]],"date-time":"2019-01-29T03:14:08Z","timestamp":1548731648000},"page":"2768-2779","source":"Crossref","is-referenced-by-count":36,"title":["Deep Neural Generative Model of Functional MRI Images for Psychiatric Disorder Diagnosis"],"prefix":"10.1109","volume":"66","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0642-4800","authenticated-orcid":false,"given":"Takashi","family":"Matsubara","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9082-0835","authenticated-orcid":false,"given":"Tetsuo","family":"Tashiro","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7160-3752","authenticated-orcid":false,"given":"Kuniaki","family":"Uehara","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref73","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00574"},{"key":"ref72","first-page":"5529","article-title":"Hierarchical implicit models and likelihood-free variational inference","author":"tran","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref71","first-page":"2672","article-title":"Generative adversarial nets","author":"goodfellow","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref70","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33013681"},{"key":"ref74","doi-asserted-by":"publisher","DOI":"10.1016\/j.nicl.2014.07.003"},{"key":"ref39","first-page":"1929","article-title":"Dropout: A simple way to prevent neural networks from overfitting","volume":"15","author":"srivastava","year":"2014","journal-title":"J Mach Learn Res"},{"key":"ref75","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-017-06509-0"},{"key":"ref38","first-page":"807","article-title":"Rectified linear units improve restricted Boltzmann machines","author":"nair","year":"0","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pcbi.1002513"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.2017.1285773"},{"key":"ref31","first-page":"700","article-title":"Deep neural generative model for fMRI image based diagnosis of mental disorder","author":"tashiro","year":"0","journal-title":"Proc Int Symp Nonlinear Theory Appl"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-67389-9_42"},{"key":"ref37","article-title":"Layer normalization","author":"ba","year":"0","journal-title":"Proc NIPS Deep Learn Symp"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1155\/2015\/824710"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.1216856110"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-017-07792-7"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1016\/S0920-9964(99)00083-3"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.1038\/mp.2014.157"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1176\/appi.ajp.161.9.1603"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1111\/acps.12363"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2009.11.011"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.1016\/j.biopsych.2016.08.018"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1038\/ncomms11254"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1007\/s00406-010-0100-7"},{"key":"ref66","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuropsychologia.2006.09.023"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.1705120114"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1093\/schbul\/sbu076"},{"key":"ref68","first-page":"532","author":"gibson","year":"2017","journal-title":"Deep Learning A Practitioner's Approach"},{"key":"ref69","first-page":"4091","article-title":"Learning hierarchical features from generative models","volume":"70","author":"zhao","year":"0","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref2","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1067\/mcp.2001.113989","article-title":"Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework","volume":"69","author":"group","year":"2001","journal-title":"Clin Pharmacol Therapeutics"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1038\/nn.3839"},{"key":"ref20","first-page":"3483","article-title":"Learning structured output representation using deep conditional generative models","author":"sohn","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2006.227"},{"key":"ref21","first-page":"1445","article-title":"Auxiliary deep generative models","volume":"48","author":"maal\u00f8e","year":"0","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1587\/transinf.2016IIP0016"},{"key":"ref23","first-page":"7053","article-title":"On separability of loss functions, and revisiting discriminative vs generative models","author":"prasad","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1006\/nimg.2001.0978"},{"key":"ref25","first-page":"841","article-title":"On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes","author":"ng","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24553-9_70"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.3389\/fncom.2016.00060"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1016\/S0006-3223(02)01784-5"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1016\/j.biopsych.2008.03.031"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1016\/j.schres.2004.03.011"},{"key":"ref56","article-title":"Structured inference networks for nonlinear state space models","author":"krishnan","year":"0","journal-title":"Proc 22nd Conf Artif Intell AAAI"},{"key":"ref55","article-title":"Nested cross-validation when selecting classifiers is overzealous for most practical applications","author":"wainer","year":"2018"},{"key":"ref54","first-page":"2079","article-title":"On over-fitting in model selection and subsequent selection bias in performance evaluation","volume":"11","author":"cawley","year":"2010","journal-title":"J Mach Learn Res"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1038\/s41592-018-0235-4"},{"key":"ref52","article-title":"Nonparametric modeling of dynamic functional connectivity in fMRI data","author":"nielsen","year":"0","journal-title":"2nd NIPS Workshop on Machine Learning and Interpretation in NeuroImaging"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.3389\/fnins.2017.00460"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1002\/mrm.1910340409"},{"key":"ref40","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2013.04.083"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.tics.2017.09.010"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.1617317113"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.50"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2014.09.003"},{"key":"ref17","article-title":"Auto-encoding variational Bayes","author":"kingma","year":"0","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref18","article-title":"Adversarial autoencoders","author":"makhzani","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref19","first-page":"3581","article-title":"Semi-supervised learning with deep generative models","author":"kingma","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.3389\/fnins.2014.00229"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2016.2527717"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2017.01.008"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2016.01.005"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.3389\/fnins.2016.00440"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2005.219"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1997.9.8.1735"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2016.10.045"},{"key":"ref46","first-page":"2825","article-title":"Scikit-learn: Machine learning in python","volume":"12","author":"pedregosa","year":"2011","journal-title":"J Mach Learn Res"},{"key":"ref45","article-title":"TensorFlow: Large-scale machine learning on heterogeneous systems","author":"abadi","year":"0","journal-title":"Proc USENIX Symp on Operating System Design and Implementation"},{"key":"ref48","author":"murphy","year":"2012","journal-title":"Machine Learning A Probabilistic Perspective"},{"key":"ref47","doi-asserted-by":"crossref","author":"neal","year":"1996","journal-title":"Bayesian learning for neural networks","DOI":"10.1007\/978-1-4612-0745-0"},{"key":"ref42","article-title":"Neural machine translation by jointly learning to align and translate","author":"bahdanau","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-35289-8_5"},{"key":"ref43","first-page":"540","article-title":"Direct feedback alignment provides learning in deep neural networks","volume":"23","author":"n\u00f8kland","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"}],"container-title":["IEEE Transactions on Biomedical Engineering"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10\/8844138\/08627955.pdf?arnumber=8627955","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,13]],"date-time":"2022-07-13T20:54:20Z","timestamp":1657745660000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8627955\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,10]]},"references-count":75,"journal-issue":{"issue":"10"},"URL":"https:\/\/doi.org\/10.1109\/tbme.2019.2895663","relation":{},"ISSN":["0018-9294","1558-2531"],"issn-type":[{"value":"0018-9294","type":"print"},{"value":"1558-2531","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,10]]}}}