{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,20]],"date-time":"2023-12-20T05:11:46Z","timestamp":1703049106376},"reference-count":57,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"6","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100012492","name":"Youth Innovation Promotion Association","doi-asserted-by":"publisher","award":["E1213A02"],"id":[{"id":"10.13039\/501100012492","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Key Research Program of Frontier Sciences, CAS","award":["NO22E0223301"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Aerosp. Electron. Syst."],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1109\/taes.2023.3299250","type":"journal-article","created":{"date-parts":[[2023,7,27]],"date-time":"2023-07-27T17:52:29Z","timestamp":1690480349000},"page":"8131-8144","source":"Crossref","is-referenced-by-count":0,"title":["SCB-GAN: A High-Quality Small Celestial Body Surface Image Synthesis Method"],"prefix":"10.1109","volume":"59","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3237-1135","authenticated-orcid":false,"given":"Wenlong","family":"Lu","sequence":"first","affiliation":[{"name":"Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Centre, Chinese Academy of Sciences, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0009-0002-3590-7684","authenticated-orcid":false,"given":"Mingrui","family":"Fan","sequence":"additional","affiliation":[{"name":"Key Laboratory of Electronics and Information Technology for Space System, National Space Science Centre, Chinese Academy of Sciences, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1643-1705","authenticated-orcid":false,"given":"Wenlong","family":"Niu","sequence":"additional","affiliation":[{"name":"Key Laboratory of Electronics and Information Technology for Space System, National Space Science Centre, Chinese Academy of Sciences, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7640-3194","authenticated-orcid":false,"given":"Xiaodong","family":"Peng","sequence":"additional","affiliation":[{"name":"Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Centre, Chinese Academy of Sciences, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0009-0009-4403-7626","authenticated-orcid":false,"given":"Zhen","family":"Yang","sequence":"additional","affiliation":[{"name":"Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Centre, Chinese Academy of Sciences, Beijing, China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.2514\/6.2016-5608"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2021.3097510"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2021.3101858"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.2514\/6.2020-1838"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.pss.2019.03.008"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/S0262-8856(00)00111-6"},{"key":"ref7","first-page":"1169","article-title":"Navigation about irregular bodies through segmentation maps","volume":"176","author":"Pugliatti","year":"2022","journal-title":"Adv. Astronautical Sci."},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.2514\/1.A35447"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.3390\/rs14246339"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1145\/3422622"},{"key":"ref11","article-title":"Progressive growing of GANs for improved quality, stability, and variation","volume-title":"Proc. Int. Conf. Learn. Representations","author":"Karras","year":"2018"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00453"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00813"},{"key":"ref14","first-page":"12104","article-title":"Training generative adversarial networks with limited data","volume":"33","author":"Karras","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"ref15","first-page":"852","article-title":"Alias-free generative adversarial networks","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"34","author":"Karras","year":"2021"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2021.3049346"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01039"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1007\/s11214-006-9140-8"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TAES.2022.3169126"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TAES.2017.2700958"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/taes.2019.2920046"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/TAES.2016.140506"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/AERO50100.2021.9438207"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/NAECON46414.2019.9058182"},{"key":"ref25","first-page":"2539","article-title":"Small-body shape recognition with convolutional neural network and comparison with explicit features based method","volume":"175","author":"Pugliatti","year":"2021","journal-title":"Adv. Astronautical Sci."},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.2514\/6.2021-4184"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/tgrs.2022.3148340"},{"key":"ref28","article-title":"Auto-encoding variational Bayes","volume-title":"Proc. 2nd Int. Conf. Learn. Representations","author":"Kingma","year":"2014"},{"key":"ref29","first-page":"2256","article-title":"Deep unsupervised learning using nonequilibrium thermodynamics","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Sohl-Dickstein","year":"2015"},{"key":"ref30","first-page":"6840","article-title":"Denoising diffusion probabilistic models","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"33","author":"Ho","year":"2020"},{"key":"ref31","article-title":"TL-GAN: Improving traffic light recognition via data synthesis for autonomous driving","author":"Wang","year":"2022"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-87237-3_46"},{"key":"ref33","first-page":"7559","article-title":"Differentiable augmentation for data-efficient GAN training","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"33","author":"Zhao"},{"key":"ref34","article-title":"Freeze the discriminator: A simple baseline for fine-tuning GANs","volume-title":"Proc. CVPR AI Content Creation Workshop","author":"Mo","year":"2020"},{"key":"ref35","first-page":"21655","article-title":"Deceive D: Adaptive pseudo augmentation for GAN training with limited data","volume":"34","author":"Jiang","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v36i1.19928"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.425"},{"key":"ref39","article-title":"GANs trained by a two time-scale update rule converge to a local Nash equilibrium","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"30","author":"Heusel","year":"2017"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.308"},{"key":"ref41","article-title":"Image augmentations for GAN training","author":"Zhao","year":"2020"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1051\/0004-6361\/201014928"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1016\/j.actaastro.2013.08.003"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4614-4903-4_2"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1126\/science.1219381"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1126\/science.aaf4219"},{"key":"ref47","article-title":"Dawn Fc2 raw (EDR) Vesta images v1.0","volume-title":"NASA Planetary Data System","author":"Nathues","year":"2014"},{"key":"ref48","article-title":"PyTorch: An imperative style, high-performance deep learning library","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Paszke","year":"2019"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/WACV45572.2020.9093363"},{"key":"ref50","article-title":"Adam: A method for stochastic optimization","volume-title":"Proc. Int. Conf. Learn. Representations (ICLR)","author":"Kingma","year":"2015"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01112"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1006\/icar.2002.6975"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1016\/B978-0-323-99731-7.00007-6"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01102"},{"key":"ref55","article-title":"Demystifying MMD GANs","author":"Binkowski","year":"2018"},{"key":"ref56","article-title":"Improved precision and recall metric for assessing generative models","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Kynknniemi","year":"2019"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2021.07.007"}],"container-title":["IEEE Transactions on Aerospace and Electronic Systems"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/7\/10353051\/10196052.pdf?arnumber=10196052","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,20]],"date-time":"2023-12-20T01:20:48Z","timestamp":1703035248000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10196052\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":57,"journal-issue":{"issue":"6"},"URL":"https:\/\/doi.org\/10.1109\/taes.2023.3299250","relation":{},"ISSN":["0018-9251","1557-9603","2371-9877"],"issn-type":[{"value":"0018-9251","type":"print"},{"value":"1557-9603","type":"electronic"},{"value":"2371-9877","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,12]]}}}