{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T14:33:45Z","timestamp":1730298825649,"version":"3.28.0"},"reference-count":38,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,12,5]],"date-time":"2021-12-05T00:00:00Z","timestamp":1638662400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,12,5]],"date-time":"2021-12-05T00:00:00Z","timestamp":1638662400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,12,5]],"date-time":"2021-12-05T00:00:00Z","timestamp":1638662400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,12,5]]},"DOI":"10.1109\/ssci50451.2021.9660182","type":"proceedings-article","created":{"date-parts":[[2022,1,24]],"date-time":"2022-01-24T21:09:51Z","timestamp":1643058591000},"page":"1-7","source":"Crossref","is-referenced-by-count":4,"title":["Harnessing Unlabeled Data to Improve Generalization of Biometric Gender and Age Classifiers"],"prefix":"10.1109","author":[{"given":"Aakash Varma","family":"Nadimpalli","sequence":"first","affiliation":[]},{"given":"Narsi","family":"Reddy","sequence":"additional","affiliation":[]},{"given":"Sreeraj","family":"Ramachandran","sequence":"additional","affiliation":[]},{"given":"Ajita","family":"Rattani","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"journal-title":"Self-training with noisy student improves imagenet classification","year":"2020","author":"xie","key":"ref38"},{"journal-title":"Fixmatch Simplifying semi-supervised learning with consistency and confidence","year":"2020","author":"sohn","key":"ref33"},{"journal-title":"Adam A method for stochastic optimization","year":"2017","author":"kingma","key":"ref32"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2014.2359646"},{"key":"ref30","first-page":"1","article-title":"VISOB 2.0 - second international competition on mobile ocular biometric recognition","author":"nguyen","year":"2020","journal-title":"IAPR ICPR Rome Italy"},{"journal-title":"Mixmatch A holistic approach to semi-supervised learning","year":"2019","author":"berthelot","key":"ref37"},{"journal-title":"Action segmentation with joint self-supervised temporal domain adaptation","year":"2020","author":"chen","key":"ref36"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/ICMLA51294.2020.00167"},{"journal-title":"Cross-domain few-shot learning with unlabelled data","year":"2021","author":"yao","key":"ref34"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/THS.2011.6107909"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1049\/iet-bmt.2017.0171"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/WACVW.2019.00024"},{"key":"ref13","article-title":"Sex-classification from cell-phones periocular iris images","author":"tapia","year":"2018","journal-title":"ArXiv Preprint"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CEEC.2018.8674194"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/ICB.2013.6613010"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/BTAS.2017.8272766"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/ICB2018.2018.00026"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2009.5413921"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2018.2807791"},{"journal-title":"Very Deep Convolutional Networks for Large-scale Image Recognition","year":"2015","author":"simonyan","key":"ref28"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2015.7301352"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/ICTAI.2004.48"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2015.2480381"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/ICB.2016.7550082"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.425"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2017.2761849"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-10-3223-3_20"},{"key":"ref7","article-title":"Fine-grained age estimation in the wild with attention lstm networks","author":"zhang","year":"2018","journal-title":"ar Xiv preprint"},{"key":"ref2","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1016\/B978-0-444-53859-8.00013-8","article-title":"Soft biometrics for surveillance: an overview","volume":"31","author":"reid","year":"2013","journal-title":"Handbook of Statistics"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/BTAS.2007.4401911"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-25948-0_99"},{"key":"ref20","article-title":"Semi-supervised learning literature survey","author":"zhu","year":"2005","journal-title":"University of Wisconsin-Madison Computer Sciences Department Tech Report"},{"key":"ref22","article-title":"Temporal ensembling for semi-supervised learning","author":"laine","year":"2016","journal-title":"ArXiv Preprint"},{"key":"ref21","first-page":"3546","article-title":"Semi-supervised learning with ladder networks","author":"rasmus","year":"2015","journal-title":"Advances in neural information processing systems"},{"key":"ref24","first-page":"665","article-title":"Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data","author":"suzuki","year":"0","journal-title":"Proceedings of ACL-08 HLT"},{"key":"ref23","article-title":"Training deep neural networks on noisy labels with bootstrapping","author":"reed","year":"2015","journal-title":"ICLR 2015"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1096"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.5391\/IJFIS.2017.17.1.1"}],"event":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","start":{"date-parts":[[2021,12,5]]},"location":"Orlando, FL, USA","end":{"date-parts":[[2021,12,7]]}},"container-title":["2021 IEEE Symposium Series on Computational Intelligence (SSCI)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9659537\/9659538\/09660182.pdf?arnumber=9660182","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T16:56:46Z","timestamp":1652201806000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9660182\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,5]]},"references-count":38,"URL":"https:\/\/doi.org\/10.1109\/ssci50451.2021.9660182","relation":{},"subject":[],"published":{"date-parts":[[2021,12,5]]}}}