{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T08:25:07Z","timestamp":1729671907189,"version":"3.28.0"},"reference-count":85,"publisher":"IEEE","license":[{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020,11]]},"DOI":"10.1109\/sc41405.2020.00072","type":"proceedings-article","created":{"date-parts":[[2021,2,22]],"date-time":"2021-02-22T20:26:48Z","timestamp":1614025608000},"page":"1-17","source":"Crossref","is-referenced-by-count":27,"title":["Metis: Learning to Schedule Long-Running Applications in Shared Container Clusters at Scale"],"prefix":"10.1109","author":[{"given":"Luping","family":"Wang","sequence":"first","affiliation":[]},{"given":"Qizhen","family":"Weng","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Chen","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Li","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref73","first-page":"3307","article-title":"Data-efficient hierarchical reinforcement learning","author":"nachum","year":"2018","journal-title":"Proc NeurIPS"},{"key":"ref72","doi-asserted-by":"crossref","DOI":"10.1609\/aaai.v24i1.7689","article-title":"Integrating sample-based planning and model-based reinforcement learning","author":"walsh","year":"2010","journal-title":"Proc AAAI"},{"key":"ref71","doi-asserted-by":"publisher","DOI":"10.1613\/jair.639"},{"journal-title":"Proc ISAIM","article-title":"Towards a unified theory of state abstraction for mdps","year":"2006","author":"li","key":"ref70"},{"journal-title":"arXiv preprint arXiv 1906 03008","article-title":"Sub-policy adaptation for hierarchical reinforcement learning","year":"2019","author":"li","key":"ref76"},{"journal-title":"OpenAI Gym","year":"2016","author":"brockman","key":"ref77"},{"key":"ref74","first-page":"3540","article-title":"Feudal networks for hierarchical reinforcement learning","volume":"70","author":"vezhnevets","year":"2017","journal-title":"Proc ICML"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1145\/3341302.3342080"},{"journal-title":"arXiv preprint arXiv 1810 10053","article-title":"Near-optimal representation learning for hierarchical reinforcement learning","year":"2018","author":"nachum","key":"ref75"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/ICDCS.2019.00201"},{"journal-title":"Proc NeurIPS","article-title":"Park: An open platform for learning-augmented computer systems","year":"2019","author":"mao","key":"ref78"},{"key":"ref79","first-page":"2825","article-title":"Scikit-learn: Machine learning in Python","volume":"12","author":"pedregosa","year":"2011","journal-title":"Journal of Machine Learning Research"},{"journal-title":"Proc USENIX ATC","article-title":"Deepdive: Transparently identifying and managing performance interference in virtualized environments","year":"2013","author":"novakovi?","key":"ref33"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1145\/2749469.2749475"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1145\/2485922.2485974"},{"key":"ref30","first-page":"127","article-title":"Quasar: resource-efficient and qosaware cluster management","volume":"49","author":"delimitro","year":"2014","journal-title":"Proc ACM ASPLOS"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1145\/3005745.3005750"},{"journal-title":"Reinforcement Learning An Introduction","year":"2018","author":"sutton","key":"ref36"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1145\/2901318.2901355"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1145\/1755913.1755938"},{"journal-title":"Proc NeurIPS","article-title":"Policy gradient methods for reinforcement learning with function approximation","year":"2000","author":"sutton","key":"ref60"},{"key":"ref62","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1038\/nature14236","article-title":"Human-level control through deep reinforcement learning","volume":"518","author":"mnih","year":"2015","journal-title":"Nature"},{"journal-title":"arXiv preprint arXiv 1807 02264","article-title":"Variance reduction for reinforcement learning in input-driven environments","year":"2018","author":"mao","key":"ref61"},{"journal-title":"arXiv preprint arXiv 1205 4839","article-title":"Off-policy actor-critic","year":"2012","author":"degris","key":"ref63"},{"journal-title":"Apache Aurora","year":"0","key":"ref28"},{"journal-title":"Metis Learning to schedule long-running applications in shared container clusters at scale (supplemental material)","year":"0","key":"ref64"},{"journal-title":"Marathon A container orchestration platform for Mesos and DC\/OS","year":"2019","author":"knaup","key":"ref27"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1109\/BigDataCongress.2017.28"},{"key":"ref66","doi-asserted-by":"publisher","DOI":"10.1023\/A:1010933404324"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1145\/2451116.2451125"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1023\/A:1022140919877"},{"key":"ref68","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-39875-9_12"},{"journal-title":"Proc NeurIPS","article-title":"Scalable trustregion method for deep reinforcement learning using kronecker-factored approximation","year":"2017","author":"wu","key":"ref69"},{"journal-title":"Apache Storm","year":"0","key":"ref2"},{"journal-title":"Apache Flink","year":"0","key":"ref1"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1145\/3267809.3267830"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1145\/3265723.3265742"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPS.2019.00078"},{"journal-title":"Production-Grade Container Orchestration","year":"0","key":"ref24"},{"journal-title":"Spark Streaming","year":"0","key":"ref23"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1145\/2741948.2741964"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1145\/2523616.2523633"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1145\/2954679.2872388"},{"journal-title":"Proc USENIX OSDI","article-title":"Morpheus: Towards automated slos for enterprise clusters","year":"2016","author":"jyothi","key":"ref51"},{"journal-title":"Proc ICML","article-title":"Spotlight: Optimizing device placement for training deep neural networks","year":"2018","author":"gao","key":"ref59"},{"journal-title":"Proc ICML","article-title":"Device placement optimization with reinforcement learning","year":"2017","author":"mirhoseini","key":"ref58"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1145\/3098822.3098843"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1145\/3267809.3267818"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1145\/1807128.1807152"},{"journal-title":"Pyscenedetect Python and opencv-based scene cut\/transition detection program & library","year":"2019","author":"castellano","key":"ref54"},{"journal-title":"hashlib — secure hashes and message digests","year":"0","key":"ref53"},{"journal-title":"ISR","year":"2018","author":"f c","key":"ref52"},{"key":"ref10","article-title":"Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems","volume":"abs 1512 1274","author":"chen","year":"2015","journal-title":"ArXiv"},{"journal-title":"Model server for apache mxnet","year":"0","key":"ref11"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1145\/3230543.3230551"},{"journal-title":"Proc USENIX NSDI","article-title":"Clipper: A low-latency online prediction serving system","year":"2017","author":"crankshaw","key":"ref12"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/3267809.3267817"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1145\/3135974.3135993"},{"journal-title":"Apache Hadoop","year":"0","key":"ref15"},{"journal-title":"Redis Benchmark","year":"0","key":"ref82"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1145\/2723372.2742797"},{"journal-title":"User space software for Intel Resource Director Technology","year":"0","key":"ref81"},{"journal-title":"Proc USENIX NSDI","article-title":"Resilient Distributed Datasets: A fault-tolerant abstraction for in-memory cluster computing","year":"2012","author":"zaharia","key":"ref17"},{"key":"ref84","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00262"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1145\/3190508.3190549"},{"key":"ref83","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1145\/3326285.3329074"},{"key":"ref80","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1145\/2517349.2522737"},{"journal-title":"Apache Kafka","year":"0","key":"ref3"},{"journal-title":"Memcached","year":"0","key":"ref6"},{"journal-title":"Redis an open source in-memory data structure store","year":"0","author":"sanfilippo","key":"ref5"},{"key":"ref85","doi-asserted-by":"publisher","DOI":"10.1287\/opre.14.4.699"},{"journal-title":"Proc USENIX OSDI","article-title":"Tensorflow: A system for large-scale machine learning","year":"2016","author":"abadi","key":"ref8"},{"journal-title":"Apache HBase","year":"0","key":"ref7"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/INM.2015.7140319"},{"key":"ref9","first-page":"1235","article-title":"Mllib: Machine learning in apache spark","volume":"17","author":"meng","year":"2016","journal-title":"The Journal of Machine Learning Research"},{"journal-title":"Alibaba production cluster data","year":"0","key":"ref46"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1145\/2463676.2465288"},{"journal-title":"Microservices Workshop Why what and how to get there","year":"0","author":"cockcroft","key":"ref48"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1145\/3297858.3304004"},{"journal-title":"Docker Swarm","year":"0","key":"ref42"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2019.8737460"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1145\/2723372.2742790"},{"journal-title":"Amazon Elastic Compute Cloud (Amazon EC2)","year":"0","key":"ref43"}],"event":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","start":{"date-parts":[[2020,11,9]]},"location":"Atlanta, GA, USA","end":{"date-parts":[[2020,11,19]]}},"container-title":["SC20: International Conference for High Performance Computing, Networking, Storage and Analysis"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9355221\/9355202\/09355246.pdf?arnumber=9355246","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,18]],"date-time":"2022-12-18T10:34:49Z","timestamp":1671359689000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9355246\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11]]},"references-count":85,"URL":"https:\/\/doi.org\/10.1109\/sc41405.2020.00072","relation":{},"subject":[],"published":{"date-parts":[[2020,11]]}}}