{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:13:50Z","timestamp":1740100430504,"version":"3.37.3"},"reference-count":56,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100003246","name":"NWO","doi-asserted-by":"publisher","award":["NWA.1160.18.316"],"id":[{"id":"10.13039\/501100003246","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,11]]},"DOI":"10.1109\/pmbs54543.2021.00017","type":"proceedings-article","created":{"date-parts":[[2021,12,28]],"date-time":"2021-12-28T21:29:40Z","timestamp":1640726980000},"page":"106-117","source":"Crossref","is-referenced-by-count":13,"title":["Bayesian Optimization for auto-tuning GPU kernels"],"prefix":"10.1109","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-2295-8263","authenticated-orcid":false,"given":"Floris-Jan","family":"Willemsen","sequence":"first","affiliation":[{"name":"Netherlands eScience Center University of Amsterdam,Amsterdam,the Netherlands"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2947-9444","authenticated-orcid":false,"given":"Rob","family":"van Nieuwpoort","sequence":"additional","affiliation":[{"name":"Netherlands eScience Center University of Amsterdam,Amsterdam,the Netherlands"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7508-3272","authenticated-orcid":false,"given":"Ben","family":"van Werkhoven","sequence":"additional","affiliation":[{"name":"Netherlands eScience Center,Amsterdam,the Netherlands"}]}],"member":"263","reference":[{"key":"ref39","first-page":"769","article-title":"Amortized bayesian optimization over discrete spaces","volume":"124","author":"rubanova","year":"0","journal-title":"Proceedings of Machine Learning Research \/ Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI)"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-04280-0_21"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1115\/1.3653121"},{"journal-title":"Practical Bayesian Optimization of Machine Learning Algorithms","year":"0","author":"snoek","key":"ref32"},{"key":"ref31","first-page":"435","author":"abramowitz","year":"1965","journal-title":"Bessel Functions of Fractional Order ser Applied mathematics series"},{"key":"ref30","article-title":"Fastfood-approximating kernel expansions in loglinear time","volume":"85","author":"le","year":"0","journal-title":"Proceedings of the International Conference on Machine Learning"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2020\/365"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-35288-2_38"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2019.11.004"},{"key":"ref34","first-page":"400","article-title":"On Bayesian Methods for Seeking the Extremum","author":"mockus","year":"1974","journal-title":"Optimization Techniques"},{"key":"ref28","first-page":"79","author":"rasmussen","year":"2006","journal-title":"Chapter 4 Covariance Functions"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.6025\/isej\/2019\/6\/1\/9-14"},{"key":"ref29","first-page":"31","author":"stein","year":"1999","journal-title":"Matern class"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1038\/nature14539"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1145\/3372390"},{"key":"ref20","article-title":"A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning","volume":"abs 1012 2599","author":"brochu","year":"2010","journal-title":"CoRR"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1145\/3038912.3052662"},{"journal-title":"Autotuning PolyBench Benchmarks with LLVM Clang\/Polly Loop Optimization Pragmas Using Bayesian Optimization (extended version)","year":"2021","author":"wu","key":"ref21"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1145\/3437801.3441621"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-92040-5_3"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0156574"},{"journal-title":"Bayesian optimization for quicker hyperparameter tuning","year":"2019","author":"kraus","key":"ref25"},{"journal-title":"NVIDIA GeForce RTX 2070 SUPER specifications","year":"0","key":"ref50"},{"journal-title":"NVIDIA A100 SXM4 40 GB","year":"0","key":"ref51"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1029\/2019MS001621"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1038\/s41592-018-0136-6"},{"key":"ref54","first-page":"80:1","article-title":"A spatial column-store to triangulate the netherlands on the fly","author":"goncalves","year":"2016","journal-title":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems ser GIS '16"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2013.09.003"},{"key":"ref52","article-title":"Clblast","author":"nugteren","year":"0","journal-title":"Proceedings of the International Workshop on OpenCL"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2011.04.234"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1145\/2628071.2628092"},{"key":"ref40","first-page":"8276","article-title":"Bayesian optimisation over multiple continuous and categorical inputs","volume":"119","author":"ru","year":"0","journal-title":"Proceedings of the 37th International Conference on Machine Learning ser Proceedings of Machine Learning Research"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/MCSoC.2015.10"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/3152821.3152877"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2018.08.004"},{"key":"ref15","article-title":"Bayesian optimization for a better dessert","author":"solnik","year":"2017","journal-title":"Proceedings of the 2017 NIPS Workshop on Bayesian Optimization December 9 2017 Long Beach USA 2017 the workshop is BayesOpt 2017 NIPS Workshop on Bayesian Optimization"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1145\/3430984.3431047"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2015.2494218"},{"journal-title":"A model-driven approach for a new generation of adaptive libraries","year":"2018","author":"cianfriglia","key":"ref18"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-32820-6_11"},{"key":"ref4","first-page":"195","article-title":"Program optimization space pruning for a multithreaded gpu","author":"ryoo","year":"0","journal-title":"International Symposium on Code Generation and Optimization"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-50436-6_29"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-15291-7_26"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/MCSoC.2015.10"},{"key":"ref8","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1023\/A:1020989410030","article-title":"Combined selection of tile sizes and unroll factors using iterative compilation","volume":"24","author":"kisuki","year":"2003","journal-title":"The Journal of Supercomputing"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/ICPP.2017.61"},{"journal-title":"TechPowerUp","article-title":"NVIDIA GeForce GTX TITAN X specifications","year":"0","key":"ref49"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CLUSTR.2008.4663803"},{"journal-title":"Scikit-optimize","year":"2020","author":"head","key":"ref46"},{"journal-title":"Bayesian Optimization Open source constrained global optimization tool for Python","year":"2014","author":"nogueira","key":"ref45"},{"journal-title":"Portfolio Allocation for Bayesian Optimization","year":"2010","author":"brochu","key":"ref48"},{"key":"ref47","first-page":"2825","article-title":"Scikit-learn: Machine learning in python","volume":"12","author":"pedregosa","year":"2011","journal-title":"Journal of Machine Learning Research"},{"journal-title":"Continuous surrogate-based optimization algorithms are well-suited for expensive discrete problems","year":"2020","author":"karlsson","key":"ref42"},{"journal-title":"An investigation of categorical variable encoding techniques in machine learning binary versus one-hot and feature hashing","year":"2018","author":"seger","key":"ref41"},{"key":"ref44","article-title":"Practical Bayesian Optimization","author":"lizotte","year":"2008","journal-title":"University of Alberta"},{"journal-title":"Dynamic Control of Ex-plore\/Exploit Trade-Off In Bayesian Optimization","year":"2018","author":"jasrasaria","key":"ref43"}],"event":{"name":"2021 International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)","start":{"date-parts":[[2021,11,15]]},"location":"St. Louis, MO, USA","end":{"date-parts":[[2021,11,15]]}},"container-title":["2021 International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9652586\/9652659\/09652797.pdf?arnumber=9652797","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,13]],"date-time":"2022-06-13T21:08:09Z","timestamp":1655154489000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9652797\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11]]},"references-count":56,"URL":"https:\/\/doi.org\/10.1109\/pmbs54543.2021.00017","relation":{},"subject":[],"published":{"date-parts":[[2021,11]]}}}