{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:27:06Z","timestamp":1727065626136},"reference-count":116,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"am","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62171474","61720106003"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100008081","name":"Open Research Fund of National Mobile Communications Research Laboratory Southeast University","doi-asserted-by":"publisher","award":["2022D03"],"id":[{"id":"10.13039\/501100008081","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004735","name":"Natural Science Foundation of Hunan Province","doi-asserted-by":"publisher","award":["2020JJ4745"],"id":[{"id":"10.13039\/501100004735","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Open J. Commun. Soc."],"published-print":{"date-parts":[[2021]]},"DOI":"10.1109\/ojcoms.2021.3128637","type":"journal-article","created":{"date-parts":[[2021,11,17]],"date-time":"2021-11-17T22:56:48Z","timestamp":1637189808000},"page":"2547-2565","source":"Crossref","is-referenced-by-count":68,"title":["An Overview on the Application of Graph Neural Networks in Wireless Networks"],"prefix":"10.1109","volume":"2","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0549-4970","authenticated-orcid":false,"given":"Shiwen","family":"He","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3531-7206","authenticated-orcid":false,"given":"Shaowen","family":"Xiong","sequence":"additional","affiliation":[]},{"given":"Yeyu","family":"Ou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5418-0455","authenticated-orcid":false,"given":"Jian","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9783-5471","authenticated-orcid":false,"given":"Jiaheng","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3616-4616","authenticated-orcid":false,"given":"Yongming","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Yaoxue","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2019.11.019"},{"key":"ref38","article-title":"From spectrum wavelet to vertex propagation: Graph convolutional networks based on Taylor approximation","author":"zhang","year":"2020","journal-title":"arXiv 2007 00730"},{"key":"ref33","first-page":"3844","article-title":"Convolutional neural networks on graphs with fast localized spectral filtering","author":"defferrard","year":"2016","journal-title":"Proc Int Conf Neural Inf Process Syst (NIPS)"},{"key":"ref32","first-page":"1","article-title":"Spectral networks and deep locally connected networks on graphs","author":"bruna","year":"2014","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref31","article-title":"Joint user association and power allocation in heterogeneous ultra dense network via semi-supervised representation learning","author":"zhang","year":"2021","journal-title":"arXiv 2103 15367"},{"key":"ref30","article-title":"Scalable power control\/beamforming in heterogeneous wireless networks with graph neural networks","author":"zhang","year":"2021","journal-title":"arXiv 2104 05463"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2018.2879624"},{"key":"ref36","article-title":"Adaptive graph convolutional neural networks","author":"li","year":"2018","journal-title":"arXiv 1801 03226"},{"key":"ref35","article-title":"Deep convolutional networks on graph-structured data","author":"henaff","year":"2015","journal-title":"arXiv 1506 05163"},{"key":"ref34","article-title":"Semi-supervised classification with graph convolutional networks","author":"kipf","year":"2016","journal-title":"arXiv 1609 02907"},{"key":"ref28","article-title":"Spectral-based graph convolutional network for directed graphs","author":"ma","year":"2019","journal-title":"arXiv 1907 08990"},{"key":"ref27","article-title":"A comprehensive survey on graph neural networks","author":"wu","year":"2019","journal-title":"arXiv 1901 00596"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/GCWkshps45667.2019.9024538"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2021.3055400"},{"key":"ref22","article-title":"Explainability in graph neural networks: A taxonomic survey","author":"yuan","year":"2020","journal-title":"arXiv 2012 15445"},{"key":"ref21","article-title":"Computing graph neural networks: A survey from algorithms to accelerators","author":"abadal","year":"2020","journal-title":"arXiv 2010 00130"},{"key":"ref24","article-title":"A review of graph neural networks and their applications in power systems","author":"liao","year":"2021","journal-title":"arXiv 2101 10025"},{"key":"ref23","article-title":"How to build a graph-based deep learning architecture in traffic domain: A survey","author":"ye","year":"2020","journal-title":"IEEE Intell Transp Syst Mag"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2020\/679"},{"key":"ref101","article-title":"Graph neural networks for massive MIMO detection","author":"scotti","year":"2020","journal-title":"arXiv 2007 05703"},{"key":"ref25","article-title":"Deep learning on knowledge graph for recommender system: A survey","author":"gao","year":"2020","journal-title":"arXiv 2004 00387"},{"key":"ref100","article-title":"Channel estimation for full-duplex RIS-assisted HAPS backhauling with graph attention networks","author":"tekbiyik","year":"2020","journal-title":"arXiv 2010 12004"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00474"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.01041"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.3301922"},{"key":"ref58","article-title":"Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting","author":"yu","year":"2017","journal-title":"arXiv 1709 04875"},{"key":"ref57","first-page":"1","article-title":"Diffusion convolutional recurrent neural network: Data-driven traffic forecasting","author":"li","year":"2018","journal-title":"Proc ICML"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2019.2963722"},{"key":"ref55","article-title":"ST-UNet: A spatio-temporal U-network for graph-structured time series modeling","author":"yu","year":"2019","journal-title":"arXiv 1903 05631"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33013656"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.3301485"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1145\/3308558.3313562"},{"key":"ref40","article-title":"Spectral graph convolutional networks with lifting-based adaptive graph wavelets","author":"xu","year":"2021","journal-title":"arXiv 2108 01660"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2018.2866382"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2019.2904897"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2020.2972352"},{"key":"ref5","first-page":"537","article-title":"Compressed sensing using generative models","author":"bora","year":"2017","journal-title":"Proc Int Conf Mach Learn (ICML)"},{"key":"ref8","first-page":"399","article-title":"Learning fast approximations of sparse coding","author":"gregor","year":"2010","journal-title":"Proc 27th Int Conf Mach Learn (ICML)"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/643"},{"key":"ref7","first-page":"1","article-title":"Communication algorithms via deep learning","author":"kim","year":"2018","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.3390\/electronics10030318"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-63823-8_76"},{"key":"ref45","first-page":"1","article-title":"Geom-GCN: Geometric graph convolutional networks","author":"pei","year":"2019","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref48","first-page":"1","article-title":"Graph attention networks","author":"velickovic","year":"2018","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref47","first-page":"6000","article-title":"Attention is all you need","author":"vaswani","year":"2017","journal-title":"Proc Conf Workshop Neural Inf Process Syst (NIPS)"},{"key":"ref42","first-page":"1263","article-title":"Neural message passing for quantum chemistry","author":"gilmer","year":"2017","journal-title":"Proc Int Conf Mach Learn (ICML)"},{"key":"ref41","article-title":"Convolutional networks on graphs for learning molecular fingerprints","author":"duvenaud","year":"2015","journal-title":"arXiv 1509 09292"},{"key":"ref44","first-page":"1993","article-title":"Diffusion-convolutional neural networks","author":"atwood","year":"2016","journal-title":"Proc Neural Inf Process Syst (NIPS)"},{"key":"ref43","first-page":"1025","article-title":"Inductive representation learning on large graphs","author":"hamilton","year":"2017","journal-title":"Proc Conf Workshop Neural Inf Process Syst (NIPS)"},{"key":"ref73","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D17-1060"},{"key":"ref72","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3219980"},{"key":"ref71","first-page":"6412","article-title":"Graph convolutional policy network for goal-directed molecular graph generation","author":"you","year":"2018","journal-title":"Proc Int Conf Neural Inf Process Syst (NIPS)"},{"key":"ref70","first-page":"2590","article-title":"Automatic curriculum graph generation for reinforcement learning agents","volume":"31","author":"svetlik","year":"2017","journal-title":"Proc AAAI Conf Artif Intell"},{"key":"ref76","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2020.11.012"},{"key":"ref77","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2020.08.032"},{"key":"ref74","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2020.105910"},{"key":"ref75","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2020\/267"},{"key":"ref78","doi-asserted-by":"publisher","DOI":"10.1007\/s10489-021-02672-0"},{"key":"ref79","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2020.3036965"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1109\/MDM.2019.00-52"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2019\/264"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2019\/317"},{"key":"ref63","article-title":"Representation learning on graphs: Methods and applications","author":"hamilton","year":"2017","journal-title":"arXiv 1709 05584"},{"key":"ref64","article-title":"Variational graph auto-encoders","author":"kipf","year":"2016","journal-title":"arXiv 1611 07308"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/362"},{"key":"ref66","doi-asserted-by":"publisher","DOI":"10.1109\/BigData47090.2019.9006123"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP40776.2020.9053623"},{"key":"ref68","doi-asserted-by":"publisher","DOI":"10.1145\/3366423.3380079"},{"key":"ref69","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.coling-main.99"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2018.2846401"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2021.3107494"},{"key":"ref95","article-title":"GBLinks: GNN-based beam selection and link activation for ultra-dense D2D mmWave networks","author":"he","year":"2021","journal-title":"arXiv 2107 02412"},{"key":"ref109","first-page":"54","article-title":"AR anchor system using mobile based 3D GNN detection","volume":"13","author":"jeong","year":"2021","journal-title":"J Broadcast Electron Media"},{"key":"ref94","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2019.8737631"},{"key":"ref108","article-title":"Wireless 3D point cloud delivery using deep graph neural networks","author":"fujihashi","year":"2020","journal-title":"arXiv 2006 09835"},{"key":"ref93","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP39728.2021.9414098"},{"key":"ref107","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP39728.2021.9414831"},{"key":"ref92","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2020.3040983"},{"key":"ref106","article-title":"Leveraging the capabilities of connected and autonomous vehicles and multi-agent reinforcement learning to mitigate highway bottleneck congestion","author":"ha","year":"2020","journal-title":"arXiv 2010 05436"},{"key":"ref91","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2021.3071480"},{"key":"ref105","article-title":"A DRL-based multiagent cooperative control framework for CAV networks: A graphic convolution Q network","author":"dong","year":"2020","journal-title":"arXiv 2010 05437"},{"key":"ref90","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP39728.2021.9415106"},{"key":"ref104","doi-asserted-by":"publisher","DOI":"10.1109\/WCSP49889.2020.9299774"},{"key":"ref103","doi-asserted-by":"publisher","DOI":"10.1109\/SECON48991.2020.9158437"},{"key":"ref102","doi-asserted-by":"publisher","DOI":"10.1109\/LCOMM.2020.2990487"},{"key":"ref111","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP39728.2021.9414520"},{"key":"ref112","doi-asserted-by":"publisher","DOI":"10.3390\/s21134321"},{"key":"ref110","doi-asserted-by":"publisher","DOI":"10.1364\/FIO.2019.FTu5B.3"},{"key":"ref98","article-title":"Graph neural network based access point selection for cell-free massive MIMO systems","author":"ranasinghe","year":"2021","journal-title":"arXiv 2107 02884"},{"key":"ref99","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2021.3078502"},{"key":"ref96","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.2973140"},{"key":"ref97","doi-asserted-by":"publisher","DOI":"10.1109\/GLOBECOM42002.2020.9322537"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2021.3073009"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TCOMM.2019.2957482"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/LCOMM.2018.2825444"},{"key":"ref13","article-title":"Topology aware deep learning for wireless network optimization","author":"zhang","year":"2021","journal-title":"arXiv 1912 08336"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2017.2693418"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2020.2978386"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2020.2981333"},{"key":"ref82","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP40776.2020.9054124"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TAI.2021.3076021"},{"key":"ref81","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2020.2988255"},{"key":"ref18","article-title":"Bridging the gap between spatial and spectral domains: A survey on graph neural networks","author":"chen","year":"2020","journal-title":"arXiv 2002 11867"},{"key":"ref84","doi-asserted-by":"publisher","DOI":"10.1109\/SPAWC48557.2020.9154336"},{"key":"ref19","article-title":"A survey on the expressive power of graph neural networks","author":"sato","year":"2020","journal-title":"arXiv 2003 04078"},{"key":"ref83","doi-asserted-by":"publisher","DOI":"10.1109\/SPAWC51858.2021.9593131"},{"key":"ref114","doi-asserted-by":"publisher","DOI":"10.1109\/TMC.2021.3125793"},{"key":"ref113","article-title":"Routing in small satellite networks: A GNN-based learning approach","author":"liu","year":"2021","journal-title":"arXiv 2108 08523"},{"key":"ref80","doi-asserted-by":"publisher","DOI":"10.1109\/SPAWC.2019.8815526"},{"key":"ref116","first-page":"933","article-title":"Language modeling with gated convolutional networks","author":"dauphin","year":"2017","journal-title":"Proc Int Conf Mach Learn (ICML)"},{"key":"ref115","first-page":"2892","article-title":"Equivariance through parameter-sharing","author":"ravanbakhsh","year":"2017","journal-title":"Proc Int Conf Mach Learn (ICML)"},{"key":"ref89","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2021.3091551"},{"key":"ref85","doi-asserted-by":"publisher","DOI":"10.1109\/WCNC49053.2021.9417260"},{"key":"ref86","doi-asserted-by":"publisher","DOI":"10.1109\/GLOBECOM42002.2020.9322426"},{"key":"ref87","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP39728.2021.9414181"},{"key":"ref88","article-title":"Learning decentralized wireless resource allocations with graph neural networks","author":"wang","year":"2021","journal-title":"arXiv 2107 01489"}],"container-title":["IEEE Open Journal of the Communications Society"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8782661\/9309127\/09618652.pdf?arnumber=9618652","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,3,14]],"date-time":"2022-03-14T21:02:33Z","timestamp":1647291753000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9618652\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"references-count":116,"URL":"https:\/\/doi.org\/10.1109\/ojcoms.2021.3128637","relation":{},"ISSN":["2644-125X"],"issn-type":[{"value":"2644-125X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021]]}}}