{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,5]],"date-time":"2025-04-05T05:09:32Z","timestamp":1743829772908,"version":"3.37.3"},"reference-count":42,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Basic Research Program of China","doi-asserted-by":"publisher","award":["2017YFB1001703"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Science Foundation of China","doi-asserted-by":"publisher","award":["U1711265","61802449","61972432","61973324"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Program for Guangdong Introducing Innovative and Entrepreneurial Teams","award":["2017ZT07X355"]},{"DOI":"10.13039\/501100003453","name":"Guangdong Natural Science Funds","doi-asserted-by":"publisher","award":["2018A030313032"],"id":[{"id":"10.13039\/501100003453","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Program for Basic and Applied Basic Research Fund of Guangdong","award":["2019A1515010030"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Open J. Commun. Soc."],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/ojcoms.2020.2994737","type":"journal-article","created":{"date-parts":[[2020,5,16]],"date-time":"2020-05-16T00:08:46Z","timestamp":1589587726000},"page":"634-645","source":"Crossref","is-referenced-by-count":54,"title":["HierTrain: Fast Hierarchical Edge AI Learning With Hybrid Parallelism in Mobile-Edge-Cloud Computing"],"prefix":"10.1109","volume":"1","author":[{"given":"Deyin","family":"Liu","sequence":"first","affiliation":[]},{"given":"Xu","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Zhi","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Qing","family":"Ling","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"journal-title":"Federated learning in mobile edge networks A comprehensive survey","year":"2019","author":"lim","key":"ref39"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1145\/2594368.2594383"},{"key":"ref33","first-page":"16","article-title":"Scalable distributed computing hierarchy: Cloud, fog and dew computing","volume":"2","author":"skala","year":"2015","journal-title":"Open Journal of Cloud Computing"},{"key":"ref32","first-page":"1","article-title":"Chainer: A next-generation open source framework for deep learning","volume":"5","author":"tokui","year":"2015","journal-title":"Proc Workshop Mach Learn Syst 29th Annu Conf Neural Inf Process Syst (NIPS)"},{"key":"ref31","first-page":"8024","article-title":"PyTorch: An imperative style, high-performance deep learning library","author":"paszke","year":"2019","journal-title":"Proc Int Conf Adv Neural Inf Process Syst"},{"journal-title":"Mxnet A flexible and efficient machine learning library for heterogeneous distributed systems","year":"2015","author":"chen","key":"ref30"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1145\/2462456.2464451"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/MPRV.2009.82"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1145\/3229556.3229562"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1145\/3194554.3194565"},{"journal-title":"Accelerating dnn training in wireless federated edge learning system","year":"2019","author":"ren","key":"ref10"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/ICDCS.2017.226"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.pmcj.2017.07.014"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ICC.2019.8761315"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2019.2946140"},{"journal-title":"Machine learning at the network edge A survey","year":"2019","author":"murshed","key":"ref14"},{"journal-title":"Very Deep Convolutional Networks for Large-scale Image Recognition","year":"2014","author":"simonyan","key":"ref15"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.91"},{"journal-title":"Mobilenets Efficient convolutional neural networks for mobile vision applications","year":"2017","author":"howard","key":"ref17"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-7908-2604-3_16"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/PADSW.2018.8645013"},{"key":"ref28","first-page":"265","article-title":"TensorFlow: A system for large-scale machine learning","author":"abadi","year":"2016","journal-title":"Proc 12th USENIX Conf Oper Syst Design Implement (OSDI)"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2019.2918951"},{"key":"ref27","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Proc Int Conf Adv Neural Inf Process Syst"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1145\/2959100.2959190"},{"key":"ref6","first-page":"181","article-title":"Poseidon: An efficient communication architecture for distributed deep learning on GPU clusters","author":"zhang","year":"2017","journal-title":"Proc USENIX Conf USENIX Annu Tech Conf"},{"key":"ref29","first-page":"3","article-title":"Theano: A CPU and GPU math expression compiler","volume":"4","author":"bergstra","year":"2010","journal-title":"Proc Python Sci Comput Conf"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.jnca.2019.06.006"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/MWC.2017.1600321"},{"journal-title":"Hydra A peer to peer distributed training & data collection framework","year":"2018","author":"mathur","key":"ref7"},{"journal-title":"BERT Pre-training of deep bidirectional transformers for language understanding","year":"2018","author":"devlin","key":"ref2"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TMC.2019.2947893"},{"key":"ref1","first-page":"818","article-title":"Visualizing and understanding convolutional networks","author":"zeiler","year":"2014","journal-title":"Proc Eur Conf Comput Vis"},{"journal-title":"Accurate large minibatch sgd Training imagenet in 1 hour","year":"2017","author":"goyal","key":"ref20"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1145\/3037697.3037698"},{"journal-title":"Large batch training of convolutional networks","year":"2017","author":"you","key":"ref21"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2019.2961237"},{"journal-title":"AdaBatch Adaptive batch sizes for training deep neural networks","year":"2017","author":"devarakonda","key":"ref24"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/INFCOMW.2019.8845240"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1016\/j.aej.2018.03.006"},{"article-title":"Learning multiple layers of features from tiny images","year":"2009","author":"krizhevsky","key":"ref26"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"}],"container-title":["IEEE Open Journal of the Communications Society"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8782661\/8816718\/09094236.pdf?arnumber=9094236","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T01:07:50Z","timestamp":1641949670000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9094236\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":42,"URL":"https:\/\/doi.org\/10.1109\/ojcoms.2020.2994737","relation":{},"ISSN":["2644-125X"],"issn-type":[{"type":"electronic","value":"2644-125X"}],"subject":[],"published":{"date-parts":[[2020]]}}}