{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T10:50:31Z","timestamp":1730285431861,"version":"3.28.0"},"reference-count":24,"publisher":"IEEE","license":[{"start":{"date-parts":[[2022,4,25]],"date-time":"2022-04-25T00:00:00Z","timestamp":1650844800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,4,25]],"date-time":"2022-04-25T00:00:00Z","timestamp":1650844800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,4,25]]},"DOI":"10.1109\/noms54207.2022.9789801","type":"proceedings-article","created":{"date-parts":[[2022,6,9]],"date-time":"2022-06-09T17:21:22Z","timestamp":1654795282000},"page":"1-6","source":"Crossref","is-referenced-by-count":0,"title":["Dynamic-Deep: Tune ECG Task Performance and Optimize Compression in IoT Architectures"],"prefix":"10.1109","author":[{"given":"Eli","family":"Brosh","sequence":"first","affiliation":[{"name":"Reichman University,Computer Science Department,Herzliya,Israel"}]},{"given":"Elad","family":"Wasserstein","sequence":"additional","affiliation":[{"name":"Reichman University,Computer Science Department,Herzliya,Israel"}]},{"given":"Anat","family":"Bremler-Barr","sequence":"additional","affiliation":[{"name":"Reichman University,Computer Science Department,Herzliya,Israel"}]}],"member":"263","reference":[{"article-title":"Dynamic-deep tech-report","year":"2022","author":"wasserstein","key":"ref10"},{"journal-title":"Machine types Compute | Engine Documentation | Google Cloud","year":"0","key":"ref11"},{"journal-title":"arXiv preprint arXiv 1301 3577","article-title":"Saturating auto-encoders","year":"2013","author":"goroshin","key":"ref12"},{"journal-title":"arXiv preprint arXiv 1510 00149","article-title":"Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding","year":"2015","author":"han","key":"ref13"},{"key":"ref14","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"hinton","year":"2006","journal-title":"Science"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2020.103801"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/S0169-2607(96)01779-8"},{"journal-title":"MIT-BIH arrhythmia database directory","year":"1988","author":"mark","key":"ref17"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/AIVR50618.2020.00040"},{"journal-title":"arXiv preprint arXiv 1707 01280","article-title":"Cardiologist-level arrhythmia detection with convolutional neural networks","year":"2017","author":"rajpurkar","key":"ref19"},{"article-title":"Data compression using chebyshev transform","year":"2007","author":"cheng","key":"ref4"},{"key":"ref3","first-page":"1454","article-title":"Ecg data compression by using wavelet transform","volume":"76","author":"chen","year":"1993","journal-title":"IEICE Transactions on Information and Systems"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00324"},{"journal-title":"arXiv preprint arXiv 1710 09282","article-title":"A survey of model compression and acceleration for deep neural networks","year":"2017","author":"cheng","key":"ref5"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.3390\/jsan7040045"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/CIC.2015.7408639"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ICME46284.2020.9102877"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/T-C.1974.223784"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00287"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.1986.325799"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/EMBC44109.2020.9176084"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/DCC.2015.66"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1016\/j.cogsys.2018.07.004"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/MC.1984.1659158"}],"event":{"name":"NOMS 2022-2022 IEEE\/IFIP Network Operations and Management Symposium","start":{"date-parts":[[2022,4,25]]},"location":"Budapest, Hungary","end":{"date-parts":[[2022,4,29]]}},"container-title":["NOMS 2022-2022 IEEE\/IFIP Network Operations and Management Symposium"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9789703\/9789704\/09789801.pdf?arnumber=9789801","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,4]],"date-time":"2022-07-04T16:10:21Z","timestamp":1656951021000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9789801\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4,25]]},"references-count":24,"URL":"https:\/\/doi.org\/10.1109\/noms54207.2022.9789801","relation":{},"subject":[],"published":{"date-parts":[[2022,4,25]]}}}