{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:59:44Z","timestamp":1732039184521,"version":"3.28.0"},"reference-count":30,"publisher":"IEEE","license":[{"start":{"date-parts":[[2019,7,1]],"date-time":"2019-07-01T00:00:00Z","timestamp":1561939200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,7,1]],"date-time":"2019-07-01T00:00:00Z","timestamp":1561939200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,7,1]],"date-time":"2019-07-01T00:00:00Z","timestamp":1561939200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019,7]]},"DOI":"10.1109\/nanoarch47378.2019.181284","type":"proceedings-article","created":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T01:45:33Z","timestamp":1588297533000},"page":"1-6","source":"Crossref","is-referenced-by-count":4,"title":["An Energy-Efficient In-Memory BNN Architecture With Time-Domain Analog and Digital Mixed-Signal Processing"],"prefix":"10.1109","author":[{"given":"Tao","family":"Wang","sequence":"first","affiliation":[]},{"given":"Weiwei","family":"Shan","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2017.2712626"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/ISSCC.2016.7418007"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ISSCC.2017.7870350"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ISSCC.2017.7870353"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/2684746.2689060"},{"article-title":"Synetgy: Algorithm-hardware Co-design for ConvNet Accelerators on Embedded FPGAs","year":"2018","author":"yang","key":"ref14"},{"article-title":"Co-design of deep neural nets and neural net accelerators for embedded vision applications","year":"2018","author":"kwon","key":"ref15"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TCAD.2017.2682138"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1145\/3007787.3001163"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.23919\/VLSIC.2017.8008533"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2016.2642198"},{"key":"ref28","first-page":"448","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"ioffe","year":"2015","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.21437\/Interspeech.2010-343"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.23919\/VLSIC.2017.8008501"},{"article-title":"Very deep convolutional networks for large-scale image recognition","year":"2014","author":"simonyan","key":"ref3"},{"article-title":"Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or –1","year":"2016","author":"courbariaux","key":"ref6"},{"article-title":"FINN: A framework for fast, scalable binarized neural network inference","year":"2016","author":"umuroglu","key":"ref29"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1145\/2847263.2847265"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1145\/3007787.3001163"},{"key":"ref7","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-319-46493-0_32","article-title":"XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks","author":"rastegari","year":"2016"},{"article-title":"Going deeper with convolutions","year":"2014","author":"szegedy","key":"ref2"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.169"},{"key":"ref1","article-title":"Imagenet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"NIPS"},{"article-title":"A 481pJ\/decision 3.4 M decision\/s multifunctional deep inmemory inference processor using standard 6T SRAM array","year":"2016","author":"kang","key":"ref20"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1145\/2749469.2750385"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2014.6855225"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/MWSCAS.2017.8052874"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/VLSIT.2018.8510687"},{"key":"ref26","doi-asserted-by":"crossref","first-page":"1009","DOI":"10.1109\/JSSC.2016.2515510","article-title":"A 28 nm configurable memory (TCAM\/BCAM\/SRAM) using push-rule 6T bit cell enabling logic-in-memory","volume":"51","author":"jeloka","year":"2016","journal-title":"IEEE J Solid-State Circuits"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2017.2776309"}],"event":{"name":"2019 IEEE\/ACM International Symposium on Nanoscale Architectures (NANOARCH)","start":{"date-parts":[[2019,7,17]]},"location":"Qingdao, China","end":{"date-parts":[[2019,7,19]]}},"container-title":["2019 IEEE\/ACM International Symposium on Nanoscale Architectures (NANOARCH)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9060423\/9073194\/09073364.pdf?arnumber=9073364","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,17]],"date-time":"2022-07-17T21:47:04Z","timestamp":1658094424000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9073364\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,7]]},"references-count":30,"URL":"https:\/\/doi.org\/10.1109\/nanoarch47378.2019.181284","relation":{},"subject":[],"published":{"date-parts":[[2019,7]]}}}