{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T10:19:02Z","timestamp":1730283542757,"version":"3.28.0"},"reference-count":35,"publisher":"IEEE","license":[{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019,9]]},"DOI":"10.1109\/mmsp.2019.8901777","type":"proceedings-article","created":{"date-parts":[[2019,11,25]],"date-time":"2019-11-25T19:13:05Z","timestamp":1574709185000},"page":"1-6","source":"Crossref","is-referenced-by-count":2,"title":["Lowering Dynamic Power of a Stream-based CNN Hardware Accelerator"],"prefix":"10.1109","author":[{"given":"Duvindu","family":"Piyasena","sequence":"first","affiliation":[]},{"given":"Rukshan","family":"Wickramasinghe","sequence":"additional","affiliation":[]},{"given":"Debdeep","family":"Paul","sequence":"additional","affiliation":[]},{"given":"Siew-Kei","family":"Lam","sequence":"additional","affiliation":[]},{"given":"Meiqing","family":"Wu","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"journal-title":"CIFAR10_Full","year":"0","key":"ref33"},{"year":"0","key":"ref32"},{"journal-title":"caffe example","year":"0","key":"ref31"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/NEWCAS.2018.8585433"},{"journal-title":"Caffe Convolutional Architecture for Fast Feature Embedding","year":"2014","author":"jia","key":"ref35"},{"journal-title":"Alexnet-bn caffe","year":"2018","key":"ref34"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/FCCM.2016.22"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPSW.2018.00032"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/MM.2018.022071131"},{"key":"ref13","first-page":"1","article-title":"Tgpa: Tile-grained pipeline architecture for low latency cnn inference","author":"wei","year":"0","journal-title":"2018 IEEE\/ACM International Conference on Computer-Aided Design (ICCAD)"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/MICRO.2016.7783725"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1145\/3061639.3062244"},{"key":"ref16","first-page":"535","article-title":"Maximizing cnn accelerator efficiency through resource partitioning","author":"shen","year":"0","journal-title":"2017 ACM\/IEEE 44th Annual International Symposium on Computer Architecture (ISCA) ISCA"},{"key":"ref17","first-page":"1","article-title":"A high performance fpga-based accelerator for large-scale convolutional neural networks","author":"li","year":"0","journal-title":"2016 26th International Conference on Field Programmable Logic and Applications (FPL)"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/MICRO.2014.58"},{"year":"0","key":"ref19"},{"key":"ref28","first-page":"701","article-title":"Approxann: An approximate computing framework for artificial neural network","author":"zhang","year":"0","journal-title":"2015 Design Automation Test in Europe Conference Exhibition (DATE)"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/ICCD.2013.6657019"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1145\/2627369.2627613"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2016.2572683"},{"key":"ref6","article-title":"Very deep convolutional networks for large-scale image recognition","volume":"abs 1409 1556","author":"simonyan","year":"2014","journal-title":"CoRR"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2016.113"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/LES.2017.2743247"},{"key":"ref8","first-page":"161","author":"zhang","year":"2015","journal-title":"Optimizing FPGA-based accelerator design for deep convolutional neural networks"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1145\/2847263.2847265"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2016.2577031"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/ISSCC.2014.6757323"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-015-0816-y"},{"key":"ref20","article-title":"Hardware-oriented approximation of convolutional neural networks","volume":"abs 1604 3168","author":"gysel","year":"2016","journal-title":"CoRR"},{"key":"ref22","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1007\/978-3-319-46493-0_32","article-title":"Xnor-net: Imagenet classification using binary convolutional neural networks","author":"rastegari","year":"2016","journal-title":"Computer Vision - ECCV 2016"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2017.7953288"},{"key":"ref24","first-page":"598","article-title":"Optimal brain damage","author":"lecun","year":"1990","journal-title":"Advances in Neural Information Processing Systems 2"},{"key":"ref23","article-title":"Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding","volume":"abs 1510 149","author":"han","year":"2015","journal-title":"CoRR"},{"key":"ref26","article-title":"Learning structured sparsity in deep neural networks","volume":"abs 1608 3665","author":"wen","year":"2016","journal-title":"CoRR"},{"key":"ref25","first-page":"1135","article-title":"Learning both weights and connections for efficient neural network","volume":"28","author":"han","year":"2015","journal-title":"Advances in neural information processing systems"}],"event":{"name":"2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP)","start":{"date-parts":[[2019,9,27]]},"location":"Kuala Lumpur, Malaysia","end":{"date-parts":[[2019,9,29]]}},"container-title":["2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8891847\/8901684\/08901777.pdf?arnumber=8901777","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,18]],"date-time":"2022-07-18T15:21:43Z","timestamp":1658157703000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8901777\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,9]]},"references-count":35,"URL":"https:\/\/doi.org\/10.1109\/mmsp.2019.8901777","relation":{},"subject":[],"published":{"date-parts":[[2019,9]]}}}