{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T20:33:46Z","timestamp":1726346026329},"reference-count":18,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"2","license":[{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["U1936120","U1636216"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National Key R&D Program of China","award":["2017YFB0802805","2017YFB0801701"]},{"DOI":"10.13039\/501100004806","name":"Fok Ying Tong Education Foundation","doi-asserted-by":"publisher","award":["171058"],"id":[{"id":"10.13039\/501100004806","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Basic Research Program of State Grid Shanghai Municipal Electric Power Company","award":["52094019007F"]},{"name":"University Grants Committee of the Hong Kong Special Administrative Region of China","award":["CityU 11201421"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Internet Comput."],"published-print":{"date-parts":[[2022,3,1]]},"DOI":"10.1109\/mic.2021.3138853","type":"journal-article","created":{"date-parts":[[2021,12,28]],"date-time":"2021-12-28T21:12:08Z","timestamp":1640725928000},"page":"61-68","source":"Crossref","is-referenced-by-count":20,"title":["Secure Logistic Regression for Vertical Federated Learning"],"prefix":"10.1109","volume":"26","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3820-8128","authenticated-orcid":false,"given":"Daojing","family":"He","sequence":"first","affiliation":[{"name":"East China Normal University, Shanghai, China"}]},{"given":"Runmeng","family":"Du","sequence":"additional","affiliation":[{"name":"East China Normal University, Shanghai, China"}]},{"given":"Shanshan","family":"Zhu","sequence":"additional","affiliation":[{"name":"East China Normal University, Shanghai, China"}]},{"given":"Min","family":"Zhang","sequence":"additional","affiliation":[{"name":"Harbin Institute of Technology, Shenzhen, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0262-7678","authenticated-orcid":false,"given":"Kaitai","family":"Liang","sequence":"additional","affiliation":[{"name":"Delft University of Technology, Delft, The Netherlands"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8524-229X","authenticated-orcid":false,"given":"Sammy","family":"Chan","sequence":"additional","affiliation":[{"name":"City University of Hong Kong, Kowloon, Hong Kong"}]}],"member":"263","reference":[{"key":"ref10","first-page":"1","article-title":"On the convergence of FedAvg on non-iid data","author":"li","year":"2020","journal-title":"Proc 8th Int Conf Learn Representations"},{"key":"ref11","first-page":"2969","article-title":"NPMML: A framework for non-interactive privacy-preserving multi-party machine learning","volume":"18","author":"li","year":"2021","journal-title":"IEEE Trans Dependable Secure Comput"},{"key":"ref12","article-title":"Privacy threats analysis to secure federated learning","author":"li","year":"2021"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/3319535.3345661"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1145\/3372885.3373815"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1007\/3-540-48910-X_16"},{"key":"ref16","first-page":"855","article-title":"On the computational efficiency of training neural networks","author":"livni","year":"2014","journal-title":"Proc Adv Neural Inf Process Syst 27 Annu Conf Neural Inf Process Syst"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2017.12"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/TDSC.2016.2536601"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1515\/popets-2017-0053"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/JSAIT.2021.3057597"},{"key":"ref6","article-title":"Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption","author":"hardy","year":"2017"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.jnca.2020.102769"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1007\/s12083-020-01017-x"},{"key":"ref7","article-title":"Parallel distributed logistic regression for vertical federated learning without third-party coordinator","author":"yang","year":"2019"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1145\/3298981"},{"key":"ref1","article-title":"Federated learning: Strategies for improving communication efficiency","author":"konecn\u00fd","year":"2016"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2944481"}],"container-title":["IEEE Internet Computing"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/4236\/9775543\/09664285.pdf?arnumber=9664285","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,7]],"date-time":"2022-12-07T00:47:22Z","timestamp":1670374042000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9664285\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,3,1]]},"references-count":18,"journal-issue":{"issue":"2"},"URL":"https:\/\/doi.org\/10.1109\/mic.2021.3138853","relation":{},"ISSN":["1089-7801","1941-0131"],"issn-type":[{"value":"1089-7801","type":"print"},{"value":"1941-0131","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,3,1]]}}}