{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T01:13:27Z","timestamp":1725498807998},"reference-count":31,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61971016","61531006"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Beijing Municipal Education Commission Cooperation Beijing Natural Science Foundation","award":["KZ 201910005007"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Signal Process. Lett."],"published-print":{"date-parts":[[2022]]},"DOI":"10.1109\/lsp.2022.3168195","type":"journal-article","created":{"date-parts":[[2022,4,19]],"date-time":"2022-04-19T19:31:34Z","timestamp":1650396694000},"page":"1097-1101","source":"Crossref","is-referenced-by-count":6,"title":["Meta-Learning Paradigm and CosAttn for Streamer Action Recognition in Live Video"],"prefix":"10.1109","volume":"29","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9373-7874","authenticated-orcid":false,"given":"Chen","family":"He","sequence":"first","affiliation":[{"name":"Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1290-0738","authenticated-orcid":false,"given":"Jing","family":"Zhang","sequence":"additional","affiliation":[{"name":"Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China"}]},{"given":"Jiacheng","family":"Yao","sequence":"additional","affiliation":[{"name":"Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9937-2669","authenticated-orcid":false,"given":"Li","family":"Zhuo","sequence":"additional","affiliation":[{"name":"Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7252-5047","authenticated-orcid":false,"given":"Qi","family":"Tian","sequence":"additional","affiliation":[{"name":"Cloud & AI Department, Huawei Technologies, Shenzhen, China"}]}],"member":"263","reference":[{"key":"ref1","article-title":"Video streaming market size, share & trends analysis report by streaming type, by solution, by platform, by service, by revenue model, by deployment type, by user, by region, and segment forecasts, 20212028","year":"2021"},{"key":"ref2","article-title":"Co-governance to build harmonious live broadcasting space","author":"He","year":"2021"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46484-8_2"},{"key":"ref4","first-page":"568","article-title":"Two-stream convolutional networks for action recognition in videos","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Simonyan"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.337"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2018.07.011"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.510"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00675"},{"key":"ref9","article-title":"CT-Net: Channel tensorization network for video classification","volume-title":"Proc. Int. Conf. Learn. Representations","author":"Li"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2018.07.034"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/LSP.2016.2598878"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2022.108741"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2019.2958871"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2020.09.027"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1049\/cje.2021.07.027"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2020.07.148"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2020.3039329"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01063"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00054"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01234-2_46"},{"key":"ref21","first-page":"1","article-title":"Few-shot action recognition with prototype-centered attentive learning","volume-title":"Proc. Brit. Mach. Vis. Conf.","author":"Zhu"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1145\/3394171.3413502"},{"key":"ref23","first-page":"1","article-title":"Temporal alignment via event boundary for few-shot action recognition","volume-title":"Proc. Brit. Mach. Vis. Conf.","author":"Li"},{"key":"ref24","first-page":"4077","article-title":"Prototypical networks for few-shot learning","volume-title":"Advances in Neural Information Processing Systems","author":"Snell","year":"2017"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/LSP.2018.2822810"},{"key":"ref26","article-title":"UCF101: A dataset of 101 human actions classes from videos in the wild","author":"Soomro","year":"2012"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2011.6126543"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.622"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58558-7_31"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2019.00166"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.cviu.2021.103250"}],"container-title":["IEEE Signal Processing Letters"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/97\/9686799\/09760219.pdf?arnumber=9760219","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,22]],"date-time":"2024-01-22T21:14:16Z","timestamp":1705958056000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9760219\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"references-count":31,"URL":"https:\/\/doi.org\/10.1109\/lsp.2022.3168195","relation":{},"ISSN":["1070-9908","1558-2361"],"issn-type":[{"value":"1070-9908","type":"print"},{"value":"1558-2361","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022]]}}}