{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T22:12:28Z","timestamp":1740175948853,"version":"3.37.3"},"reference-count":45,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"2","license":[{"start":{"date-parts":[[2020,4,1]],"date-time":"2020-04-01T00:00:00Z","timestamp":1585699200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2020,4,1]],"date-time":"2020-04-01T00:00:00Z","timestamp":1585699200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,4,1]],"date-time":"2020-04-01T00:00:00Z","timestamp":1585699200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"Dyson Technology Ltd"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Robot. Autom. Lett."],"published-print":{"date-parts":[[2020,4]]},"DOI":"10.1109\/lra.2020.2977835","type":"journal-article","created":{"date-parts":[[2020,3,2]],"date-time":"2020-03-02T20:45:38Z","timestamp":1583181938000},"page":"3533-3539","source":"Crossref","is-referenced-by-count":32,"title":["Learning One-Shot Imitation From Humans Without Humans"],"prefix":"10.1109","volume":"5","author":[{"given":"Alessandro","family":"Bonardi","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3991-0621","authenticated-orcid":false,"given":"Stephen","family":"James","sequence":"additional","affiliation":[]},{"given":"Andrew J.","family":"Davison","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","first-page":"2121","article-title":"Devise: A deep visual-semantic embedding model","author":"frome","year":"0","journal-title":"Proc Advances Neural Inf Process Syst"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2016.7759114"},{"article-title":"A survey on metric learning for feature vectors and structured data","year":"2013","author":"bellet","key":"ref33"},{"key":"ref32","article-title":"Metric learning: A survey","author":"kulis","year":"2012","journal-title":"Foundations and Trends in Machine Learning"},{"key":"ref31","first-page":"4077","article-title":"Prototypical networks for few-shot learning","author":"snell","year":"0","journal-title":"Proc Advances Neural Inf Process Syst"},{"key":"ref30","first-page":"2252","article-title":"Few-shot learning through an information retrieval lens","author":"triantafillou","year":"0","journal-title":"Proc Advances Neural Inf Process Syst"},{"key":"ref37","first-page":"291","article-title":"Learning a visuomotor controller for real world robotic grasping using easily simulated depth images","author":"viereck","year":"0","journal-title":"Proc Conf Robot Learn"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2017.8202133"},{"article-title":"CAD2RL: Real single-image flight without a single real image","year":"2016","author":"sadeghi","key":"ref35"},{"key":"ref34","article-title":"3D simulation for robot arm control with deep Q-learning","author":"james","year":"0","journal-title":"Proc NIPS Workshop (Deep Learn Action Interact )"},{"key":"ref10","first-page":"305","article-title":"ALVINN: An autonomous land vehicle in a neural network","author":"pomerleau","year":"0","journal-title":"Proc Advances Neural Inf Process Syst"},{"article-title":"Pyrep: Bringing v-rep to deep robot learning","year":"2019","author":"james","key":"ref40"},{"key":"ref11","first-page":"627","article-title":"A reduction of imitation learning and structured prediction to no-regret online learning","author":"ross","year":"0","journal-title":"Proc Int Conf Artif Intell Statist"},{"key":"ref12","first-page":"663","article-title":"Algorithms for inverse reinforcement learning","author":"ng","year":"0","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/1015330.1015430"},{"key":"ref14","first-page":"49","article-title":"Guided cost learning: Deep inverse optimal control via policy optimization","author":"finn","year":"0","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref15","first-page":"1","article-title":"Learning collaborative manipulation tasks by demonstration using a haptic interface","author":"calinon","year":"0","journal-title":"Proc IEEE Int Conf Adv Robot"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2018.8461249"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1145\/2157689.2157815"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2011.6095059"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.robot.2004.03.005"},{"key":"ref28","first-page":"1842","article-title":"Meta-learning with memory-augmented neural networks","author":"santoro","year":"2016","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.15607\/RSS.2018.XIV.002"},{"key":"ref27","article-title":"Siamese neural networks for one-shot image recognition","author":"koch","year":"0","journal-title":"Proc ICML Deep Learn Workshop"},{"key":"ref3","first-page":"1334","article-title":"End-to-end training of deep visuomotor policies","volume":"17","author":"levine","year":"2016","journal-title":"J Mach Learn Res"},{"key":"ref6","first-page":"734","article-title":"Sim-to-real reinforcement learning for deformable object manipulation","author":"matas","year":"0","journal-title":"Proc Conf Robot Learn"},{"key":"ref29","article-title":"Optimization as a model for few-shot learning","author":"ravi","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref5","first-page":"334","article-title":"Transferring end-to-end visuomotor control from simulation to real world for a multi-stage task","author":"james","year":"0","journal-title":"Proc Conf Robot Learn"},{"key":"ref8","first-page":"12\ufffd627","article-title":"Sim-to-real via sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical adaptation networks","author":"james","year":"0","journal-title":"Proc IEEE Conf Comput Vision Pattern Recognit"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2018.8460875"},{"key":"ref2","first-page":"3686","article-title":"Robot learning manipulation action plans by“ watching” unconstrained videos from the world wide web","author":"yang","year":"0","journal-title":"Proc 29th AAAI Conf Artif Intell"},{"key":"ref9","first-page":"783","article-title":"Task-embedded control networks for few-shot imitation learning","author":"james","year":"0","journal-title":"Proc Conf Robot Learn"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.robot.2013.08.003"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/ROBOT.2004.1308798"},{"key":"ref45","first-page":"357","article-title":"One-shot visual imitation learning via meta-learning","author":"finn","year":"0","journal-title":"Proc Conf Robot Learn"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/MRA.2010.936961"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/ROMAN.2006.314458"},{"article-title":"Layer normalization","year":"2016","author":"ba","key":"ref42"},{"key":"ref24","first-page":"1","article-title":"Learning robot activities from first-person human videos using convolutional future regression","author":"lee","year":"0","journal-title":"Proc IEEE Conf Comput Vision Pattern Recognit Workshops"},{"key":"ref41","first-page":"1321","article-title":"Coppeliasim (formerly V-rep): A versatile and scalable robot simulation framework","author":"rohmer","year":"0","journal-title":"Proc Int Conf Intell Robots Syst"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2018.2860057"},{"key":"ref44","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"0","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref26","first-page":"3637","article-title":"Matching networks for one shot learning","author":"vinyals","year":"0","journal-title":"Proc Advances Neural Inf Process Syst"},{"key":"ref43","article-title":"Fast and accurate deep network learning by exponential linear units (ELUS)","author":"clevert","year":"0","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.artint.2015.08.009"}],"container-title":["IEEE Robotics and Automation Letters"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/7083369\/8932682\/09020095.pdf?arnumber=9020095","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,4,27]],"date-time":"2022-04-27T17:32:31Z","timestamp":1651080751000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9020095\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,4]]},"references-count":45,"journal-issue":{"issue":"2"},"URL":"https:\/\/doi.org\/10.1109\/lra.2020.2977835","relation":{},"ISSN":["2377-3766","2377-3774"],"issn-type":[{"type":"electronic","value":"2377-3766"},{"type":"electronic","value":"2377-3774"}],"subject":[],"published":{"date-parts":[[2020,4]]}}}