{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T08:43:07Z","timestamp":1725612187015},"reference-count":15,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"1","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62072019"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Comput. Arch. Lett."],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1109\/lca.2023.3326170","type":"journal-article","created":{"date-parts":[[2023,10,19]],"date-time":"2023-10-19T17:58:37Z","timestamp":1697738317000},"page":"125-128","source":"Crossref","is-referenced-by-count":1,"title":["Architectural Implications of GNN Aggregation Programming Abstractions"],"prefix":"10.1109","volume":"23","author":[{"ORCID":"http:\/\/orcid.org\/0009-0009-2785-4480","authenticated-orcid":false,"given":"Yingjie","family":"Qi","sequence":"first","affiliation":[{"name":"School of Computer Science and Engineering, Beihang University, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8424-7040","authenticated-orcid":false,"given":"Jianlei","family":"Yang","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering, Beihang University, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0009-0008-1440-1493","authenticated-orcid":false,"given":"Ao","family":"Zhou","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering, Beihang University, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0009-0006-6018-8414","authenticated-orcid":false,"given":"Tong","family":"Qiao","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering, Beihang University, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3473-9703","authenticated-orcid":false,"given":"Chunming","family":"Hu","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering, Beihang University, Beijing, China"}]}],"member":"263","reference":[{"key":"ref1","article-title":"Semi-supervised classification with graph convolutional networks","volume-title":"arXiv:1609.02907","author":"Kipf"},{"key":"ref2","first-page":"23341","article-title":"How powerful are spectral graph neural networks?","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Wang"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1145\/3477141"},{"key":"ref4","first-page":"443","article-title":"NeuGraph: Parallel deep neural network computation on large graphs","volume-title":"Proc. USENIX Conf. Usenix Annu. Tech. Conf.","author":"Ma"},{"key":"ref5","first-page":"1","article-title":"fuseGNN: Accelerating graph convolutional neural network training on GPGPU","volume-title":"Proc. IEEE\/ACM Int. Conf. Comput. Aided Des.","author":"Chen"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1145\/3466752.3480113"},{"key":"ref7","first-page":"467","article-title":"Understanding GNN computational graph: A coordinated computation, IO, and memory perspective","volume-title":"Proc. Mach. Learn. Syst.","author":"Zhang"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1145\/3575693.3575723"},{"key":"ref9","article-title":"Fast graph representation learning with PyTorch geometric","volume-title":"arXiv:1903.02428","author":"Fey"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/MICRO50266.2020.00079"},{"key":"ref11","article-title":"Deep graph library: A graph-centric, highly-performant package for graph neural networks","volume-title":"arXiv:1909.01315","author":"Wang"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA47549.2020.00012"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/3447786.3456229"},{"key":"ref14","article-title":"Graph attention networks","author":"Velickovic","year":"2017","journal-title":"arXiv: 1710.10903"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1145\/3442381.3449882"}],"container-title":["IEEE Computer Architecture Letters"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10208\/10375809\/10288038.pdf?arnumber=10288038","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,5]],"date-time":"2024-06-05T17:45:48Z","timestamp":1717609548000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10288038\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":15,"journal-issue":{"issue":"1"},"URL":"https:\/\/doi.org\/10.1109\/lca.2023.3326170","relation":{},"ISSN":["1556-6056","1556-6064","2473-2575"],"issn-type":[{"value":"1556-6056","type":"print"},{"value":"1556-6064","type":"electronic"},{"value":"2473-2575","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,1]]}}}