{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T09:54:26Z","timestamp":1742378066577,"version":"3.37.3"},"reference-count":32,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"6","license":[{"start":{"date-parts":[[2018,12,1]],"date-time":"2018-12-01T00:00:00Z","timestamp":1543622400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"}],"funder":[{"name":"EPSRC Centre for Mathematical Imaging in Healthcare","award":["EP\/N014588\/1"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE J. Sel. Top. Signal Process."],"published-print":{"date-parts":[[2018,12]]},"DOI":"10.1109\/jstsp.2018.2876995","type":"journal-article","created":{"date-parts":[[2018,10,19]],"date-time":"2018-10-19T14:52:56Z","timestamp":1539960776000},"page":"1615-1627","source":"Crossref","is-referenced-by-count":16,"title":["Recurrent Variational Autoencoders for Learning Nonlinear Generative Models in the Presence of Outliers"],"prefix":"10.1109","volume":"12","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-4219-781X","authenticated-orcid":false,"given":"Yu","family":"Wang","sequence":"first","affiliation":[]},{"given":"Bin","family":"Dai","sequence":"additional","affiliation":[]},{"given":"Gang","family":"Hua","sequence":"additional","affiliation":[]},{"given":"John","family":"Aston","sequence":"additional","affiliation":[]},{"given":"David","family":"Wipf","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1023\/A:1007665907178"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.2307\/2334448"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.57"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46478-7_51"},{"key":"ref11","article-title":"Tutorial on variational autoencoders","author":"doersch","year":"2016","journal-title":"arXiv 1606 05908"},{"key":"ref12","article-title":"Variational EM algorithms for non-Gaussian latent variable models","author":"palmer","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4757-4286-2"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2002.808076"},{"key":"ref15","article-title":"Non-convex rank minimization via an empirical Bayesian approach","author":"wipf","year":"0","journal-title":"Proc Uncertainty Artif Intell"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511804441"},{"key":"ref17","article-title":"Deeply supervised nets","author":"lee","year":"0","journal-title":"Proc Int Conf Artif Intell Statist"},{"key":"ref18","article-title":"Learning to learn by gradient descent by gradient descent","author":"andrychowicz","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref19","article-title":"Learning to optimize","author":"li","year":"2017","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"ref4","article-title":"Stochastic backpropagation and approximate inference in deep generative models","author":"rezende","year":"0","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.177"},{"key":"ref3","article-title":"Auto-encoding variational Bayes","author":"kingma","year":"0","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref6","article-title":"Green generative modeling: Recycling dirty data using recurrent variational autoencoders","author":"wang","year":"0","journal-title":"Proc Uncertainty Artif Intell"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1145\/1970392.1970395"},{"key":"ref5","article-title":"Connections with robust PCA and the role of emergent sparsity in variational autoencoder models","volume":"19","author":"dai","year":"2018","journal-title":"J Mach Learn Res"},{"key":"ref8","article-title":"Learning structured output representation using deep conditional generative models","author":"sohn","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref7","article-title":"Infovae: Information maximizing variational autoencoders","author":"zhao","year":"2017","journal-title":"arXiv 1706 02262"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1126\/science.1127647"},{"key":"ref9","article-title":"Deep convolutional inverse graphics network","author":"kulkarni","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1007\/BF00332918"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2015.2392779"},{"key":"ref22","article-title":"Maximal sparsity with deep networks","author":"xin","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref21","article-title":"Deep unfolding: Model-based inspiration of novel deep architectures","author":"hershey","year":"2014","journal-title":"arXiv 1409 2574"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/JSTSP.2010.2042413"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/s00041-008-9045-x"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.483"},{"key":"ref25","article-title":"From Bayesian sparsity to gated recurrent nets","author":"he","year":"2017","journal-title":"Proc Adv Neural Inf Process Syst"}],"container-title":["IEEE Journal of Selected Topics in Signal Processing"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/4200690\/8566078\/08500175.pdf?arnumber=8500175","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T11:43:29Z","timestamp":1641987809000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8500175\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,12]]},"references-count":32,"journal-issue":{"issue":"6"},"URL":"https:\/\/doi.org\/10.1109\/jstsp.2018.2876995","relation":{},"ISSN":["1932-4553","1941-0484"],"issn-type":[{"type":"print","value":"1932-4553"},{"type":"electronic","value":"1941-0484"}],"subject":[],"published":{"date-parts":[[2018,12]]}}}