{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,26]],"date-time":"2024-09-26T04:04:23Z","timestamp":1727323463504},"reference-count":46,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"19","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"Stable Support Plan Program of Shenzhen Natural Science Fund","award":["20220815111111002"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Internet Things J."],"published-print":{"date-parts":[[2024,10,1]]},"DOI":"10.1109\/jiot.2024.3417432","type":"journal-article","created":{"date-parts":[[2024,7,22]],"date-time":"2024-07-22T18:05:12Z","timestamp":1721671512000},"page":"30965-30977","source":"Crossref","is-referenced-by-count":0,"title":["GT-TTE: Modeling Trajectories as Graphs for Travel Time Estimation"],"prefix":"10.1109","volume":"11","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6930-1838","authenticated-orcid":false,"given":"Yunjie","family":"Huang","sequence":"first","affiliation":[{"name":"Thrust of Data Science, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7861-8957","authenticated-orcid":false,"given":"Xiaozhuang","family":"Song","sequence":"additional","affiliation":[{"name":"School of Data Science, Chinese University of Hong Kong, Shenzhen, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0004-1801","authenticated-orcid":false,"given":"Shiyao","family":"Zhang","sequence":"additional","affiliation":[{"name":"Research Institute for Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1386-767X","authenticated-orcid":false,"given":"Lei","family":"Li","sequence":"additional","affiliation":[{"name":"Thrust of Data Science, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6392-6711","authenticated-orcid":false,"given":"James","family":"Jianqiao Yu","sequence":"additional","affiliation":[{"name":"Department of Computer Science, University of York, York, U.K."}]}],"member":"263","reference":[{"doi-asserted-by":"publisher","key":"ref1","DOI":"10.1109\/JIOT.2022.3190864"},{"doi-asserted-by":"publisher","key":"ref2","DOI":"10.1007\/s10619-014-7146-x"},{"doi-asserted-by":"publisher","key":"ref3","DOI":"10.1016\/j.cor.2018.02.008"},{"doi-asserted-by":"publisher","key":"ref4","DOI":"10.1109\/TKDE.2012.153"},{"doi-asserted-by":"publisher","key":"ref5","DOI":"10.1145\/3534678.3539358"},{"doi-asserted-by":"publisher","key":"ref6","DOI":"10.1109\/ITSC48978.2021.9564890"},{"doi-asserted-by":"publisher","key":"ref7","DOI":"10.1109\/ICSMC.2006.385244"},{"doi-asserted-by":"publisher","key":"ref8","DOI":"10.1109\/ITSC.2006.1706789"},{"doi-asserted-by":"publisher","key":"ref9","DOI":"10.1111\/mice.12315"},{"doi-asserted-by":"publisher","key":"ref10","DOI":"10.1007\/978-981-10-7200-0_6"},{"key":"ref11","article-title":"Convolutional networks for images, speech, and time series","volume-title":"The Handbook of Brain Theory and Neural Networks","author":"LeCun","year":"1995"},{"doi-asserted-by":"publisher","key":"ref12","DOI":"10.1007\/978-1-4613-1367-0_10"},{"doi-asserted-by":"publisher","key":"ref13","DOI":"10.1609\/aaai.v32i1.11877"},{"doi-asserted-by":"publisher","key":"ref14","DOI":"10.24963\/ijcai.2018\/508"},{"doi-asserted-by":"publisher","key":"ref15","DOI":"10.1145\/3357384.3357870"},{"doi-asserted-by":"publisher","key":"ref16","DOI":"10.1145\/3394486.3403320"},{"doi-asserted-by":"publisher","key":"ref17","DOI":"10.1109\/LSP.2020.3048849"},{"doi-asserted-by":"publisher","key":"ref18","DOI":"10.1109\/TITS.2022.3145382"},{"doi-asserted-by":"publisher","key":"ref19","DOI":"10.1561\/116.00000123"},{"doi-asserted-by":"publisher","key":"ref20","DOI":"10.1109\/TITS.2019.2935152"},{"key":"ref21","article-title":"Diffusion convolutional recurrent neural network: Data-driven traffic forecasting","author":"Li","year":"2018","journal-title":"arXiv:1707.01926"},{"doi-asserted-by":"publisher","key":"ref22","DOI":"10.1609\/aaai.v33i01.3301922"},{"doi-asserted-by":"publisher","key":"ref23","DOI":"10.1145\/3366423.3380027"},{"key":"ref24","first-page":"1","article-title":"Graph transformer networks","volume-title":"Proc. 33rd Adv. Neural Inf. Process. Syst.","author":"Yun"},{"doi-asserted-by":"publisher","key":"ref25","DOI":"10.48550\/ARXIV.1706.03762"},{"key":"ref26","first-page":"1","article-title":"Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting","volume-title":"Proc. 33rd Adv. Neural Inf. Process. Syst.","author":"Li"},{"key":"ref27","article-title":"Spatial\u2013temporal transformer networks for traffic flow forecasting","author":"Xu","year":"2021","journal-title":"arXiv:2001.02908"},{"doi-asserted-by":"publisher","key":"ref28","DOI":"10.1111\/tgis.12644"},{"doi-asserted-by":"publisher","key":"ref29","DOI":"10.1155\/2022\/3235717"},{"doi-asserted-by":"publisher","key":"ref30","DOI":"10.1016\/j.future.2021.07.012"},{"doi-asserted-by":"publisher","key":"ref31","DOI":"10.1016\/j.eswa.2022.117057"},{"key":"ref32","first-page":"1","article-title":"Convolutional LSTM network: A machine learning approach for precipitation nowcasting","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Shi"},{"key":"ref33","first-page":"2067","article-title":"Gated feedback recurrent neural networks","volume-title":"Proc. 32nd Int. Conf. Mach. Learn.","author":"Chung"},{"doi-asserted-by":"publisher","key":"ref34","DOI":"10.1007\/978-3-642-83539-1_2"},{"doi-asserted-by":"publisher","key":"ref35","DOI":"10.1145\/2939672.2939754"},{"doi-asserted-by":"publisher","key":"ref36","DOI":"10.24963\/ijcai.2019\/547"},{"doi-asserted-by":"publisher","key":"ref37","DOI":"10.1016\/j.knosys.2022.110080"},{"doi-asserted-by":"publisher","key":"ref38","DOI":"10.1109\/TVT.2022.3178094"},{"doi-asserted-by":"publisher","key":"ref39","DOI":"10.24963\/ijcai.2019\/245"},{"doi-asserted-by":"publisher","key":"ref40","DOI":"10.1145\/3293317"},{"doi-asserted-by":"publisher","key":"ref41","DOI":"10.1145\/3219819.3219900"},{"key":"ref42","article-title":"A unified neural network approach for estimating travel time and distance for a taxi trip","author":"Jindal","year":"2017","journal-title":"arXiv:1710.04350"},{"doi-asserted-by":"publisher","key":"ref43","DOI":"10.1145\/3219819.3220033"},{"doi-asserted-by":"publisher","key":"ref44","DOI":"10.1109\/TII.2019.2943906"},{"doi-asserted-by":"publisher","key":"ref45","DOI":"10.1186\/s40537-023-00841-1"},{"doi-asserted-by":"publisher","key":"ref46","DOI":"10.1007\/978-3-031-26422-1_36"}],"container-title":["IEEE Internet of Things Journal"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/6488907\/10691380\/10606396.pdf?arnumber=10606396","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,25]],"date-time":"2024-09-25T04:55:06Z","timestamp":1727240106000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10606396\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,1]]},"references-count":46,"journal-issue":{"issue":"19"},"URL":"https:\/\/doi.org\/10.1109\/jiot.2024.3417432","relation":{},"ISSN":["2327-4662","2372-2541"],"issn-type":[{"type":"electronic","value":"2327-4662"},{"type":"electronic","value":"2372-2541"}],"subject":[],"published":{"date-parts":[[2024,10,1]]}}}