{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,30]],"date-time":"2025-03-30T21:44:40Z","timestamp":1743371080684,"version":"3.37.3"},"reference-count":42,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"8","license":[{"start":{"date-parts":[[2024,4,15]],"date-time":"2024-04-15T00:00:00Z","timestamp":1713139200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,4,15]],"date-time":"2024-04-15T00:00:00Z","timestamp":1713139200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,4,15]],"date-time":"2024-04-15T00:00:00Z","timestamp":1713139200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62372075","62072065","62272256","62172377"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100012542","name":"Sichuan Science and Technology Program","doi-asserted-by":"publisher","award":["2023YFQ0029","2023YFQ0028"],"id":[{"id":"10.13039\/100012542","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Major Program of Shandong Provincial Natural Science Foundation for the Fundamental Research","award":["ZR2022ZD03"]},{"name":"Pilot Project for Integrated Innovation of Science, Education and Industry of Qilu University of Technology","award":["2022XD001"]},{"name":"Promotion Program of Computer Science and Technology in Qilu University of Technology","award":["2023PY059"]},{"name":"\u201cColleges and Universities 20 Terms\u201d Foundation of Jinan City, China","award":["202228093"]},{"DOI":"10.13039\/501100001809","name":"Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62172377","61872205"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007129","name":"Shandong Provincial Natural Science Foundation","doi-asserted-by":"publisher","award":["ZR2019MF018"],"id":[{"id":"10.13039\/501100007129","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Internet Things J."],"published-print":{"date-parts":[[2024,4,15]]},"DOI":"10.1109\/jiot.2023.3340880","type":"journal-article","created":{"date-parts":[[2023,12,8]],"date-time":"2023-12-08T19:32:13Z","timestamp":1702063933000},"page":"13837-13850","source":"Crossref","is-referenced-by-count":3,"title":["DCI-PFGL: Decentralized Cross-Institutional Personalized Federated Graph Learning for IoT Service Recommendation"],"prefix":"10.1109","volume":"11","author":[{"ORCID":"https:\/\/orcid.org\/0009-0002-6866-8798","authenticated-orcid":false,"given":"Biao","family":"Xie","sequence":"first","affiliation":[{"name":"School of Big Data and Software Engineering, Chongqing University, Chongqing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5825-2241","authenticated-orcid":false,"given":"Chunqiang","family":"Hu","sequence":"additional","affiliation":[{"name":"School of Big Data and Software Engineering, Chongqing University, Chongqing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9052-4868","authenticated-orcid":false,"given":"Hongyu","family":"Huang","sequence":"additional","affiliation":[{"name":"College of Computer Science, Chongqing University, Chongqing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6451-1158","authenticated-orcid":false,"given":"Jiguo","family":"Yu","sequence":"additional","affiliation":[{"name":"Big Data Institute, Qilu University of Technology, Jinan, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7326-5796","authenticated-orcid":false,"given":"Hui","family":"Xia","sequence":"additional","affiliation":[{"name":"College of Computer Science and Technology, Ocean University of China, Qingdao, China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2014.2306328"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1145\/138859.138867"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1145\/3535101"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/tnse.2023.3337828"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2017.2694844"},{"key":"ref6","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","volume-title":"Proc. 20th Int. Conf. Artif. Intell. Statist. (AISTATS)","volume":"54","author":"McMahan"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1145\/3575637.3575644"},{"key":"ref8","first-page":"14747","article-title":"Deep leakage from gradients","volume-title":"Proc. 33rd Int. Conf. Neural Inf. Process. Syst. (NeurIPS)","volume":"32","author":"Zhu"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2022.3213650"},{"key":"ref10","first-page":"43","article-title":"Empirical analysis of predictive algorithms for collaborative filtering","volume-title":"Proc. 14th Conf. Uncertainty Artif. Intell.","author":"Breese"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1145\/336597.336662"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3219890"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i04.6094"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1145\/3394486.3403091"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1145\/3397271.3401063"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1145\/3485447.3512108"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1145\/3485447.3512104"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i5.16600"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2021.3125565"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-022-30714-9"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1145\/3501815"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2022.3203395"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1145\/3447548.3467371"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2021.3127712"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2023.3280751"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2020.2991416"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/tdsc.2023.3300749"},{"key":"ref28","first-page":"1263","article-title":"Neural message passing for quantum chemistry","volume-title":"Proc. 34th Int. Conf. Mach. Learn. (ICML)","volume":"70","author":"Gilmer"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1561\/9781601988195"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2020.2988575"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1007\/BF01386390"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/TIT.2003.813506"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1145\/3534678.3539112"},{"key":"ref34","article-title":"Semi-supervised classification with graph convolutional networks","author":"Kipf","year":"2017","journal-title":"arXiv:1609.02907"},{"key":"ref35","first-page":"1","article-title":"Graph attention networks","volume-title":"Proc. Int. Conf. Learn. Represent. (ICLR)","author":"Veli\u010dkovi\u0107"},{"key":"ref36","first-page":"1025","article-title":"Inductive representation learning on large graphs","volume-title":"Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)","volume":"30","author":"Hamilton"},{"key":"ref37","first-page":"1","article-title":"Adaptive universal generalized PageRank graph neural network","volume-title":"Proc. Int. Conf. Learn. Represent. (ICLR)","author":"Chien"},{"key":"ref38","first-page":"1","article-title":"How powerful are graph neural networks?","volume-title":"Proc. Int. Conf. Learn. Represent. (ICLR)","author":"Xu"},{"key":"ref39","first-page":"1","article-title":"Adaptive federated optimization","volume-title":"Proc. Int. Conf. Learn. Represent. (ICLR)","author":"Reddi"},{"key":"ref40","first-page":"429","article-title":"Federated optimization in heterogeneous networks","volume-title":"Proc. Mach. Learn. Syst.","volume":"2","author":"Li"},{"key":"ref41","first-page":"1","article-title":"FedBN: Federated learning on non-IID features via local batch normalization","volume-title":"Proc. Int. Conf. Learn. Represent. (ICLR)","author":"Li"},{"key":"ref42","first-page":"6357","article-title":"Ditto: Fair and robust federated learning through personalization","volume-title":"Proc. 38th Int. Conf. Mach. Learn. (ICML)","volume":"139","author":"Li"}],"container-title":["IEEE Internet of Things Journal"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6488907\/10495736\/10349125.pdf?arnumber=10349125","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,10]],"date-time":"2024-04-10T18:31:26Z","timestamp":1712773886000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10349125\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4,15]]},"references-count":42,"journal-issue":{"issue":"8"},"URL":"https:\/\/doi.org\/10.1109\/jiot.2023.3340880","relation":{},"ISSN":["2327-4662","2372-2541"],"issn-type":[{"type":"electronic","value":"2327-4662"},{"type":"electronic","value":"2372-2541"}],"subject":[],"published":{"date-parts":[[2024,4,15]]}}}