{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T09:19:31Z","timestamp":1730279971144,"version":"3.28.0"},"reference-count":20,"publisher":"IEEE","license":[{"start":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T00:00:00Z","timestamp":1559347200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T00:00:00Z","timestamp":1559347200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T00:00:00Z","timestamp":1559347200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019,6]]},"DOI":"10.1109\/iwssip.2019.8787253","type":"proceedings-article","created":{"date-parts":[[2019,8,6]],"date-time":"2019-08-06T01:09:22Z","timestamp":1565053762000},"page":"121-126","source":"Crossref","is-referenced-by-count":18,"title":["Whole Heart Segmentation from CT images Using 3D U-Net architecture"],"prefix":"10.1109","author":[{"given":"Marija","family":"Habijan","sequence":"first","affiliation":[]},{"given":"Hrvoje","family":"Leventic","sequence":"additional","affiliation":[]},{"given":"Irena","family":"Galic","sequence":"additional","affiliation":[]},{"given":"Danilo","family":"Babin","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","article-title":"U-Net: Convolutional Networks for Biomedical Image Segmentation","author":"ronneberger","year":"2015","journal-title":"CoRR"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-00889-5_1"},{"key":"ref12","first-page":"424","article-title":"3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation","author":"figek","year":"2016","journal-title":"Medical Image Computing and Computer- Assisted Intervention - MICCAI 2016"},{"key":"ref13","first-page":"2818","article-title":"Rethinking the inception architecture for computer vision","author":"szegedy","year":"2015","journal-title":"2016 TREE Conference on Computer Vision and Pattern Recognition"},{"key":"ref14","article-title":"Adam: A Method for Stochastic Optimization","author":"kingma","year":"2015","journal-title":"International Conference on Learning Representations"},{"key":"ref15","article-title":"Closing the generalization gap of adaptive gradient methods in training deep neural networks","author":"chen","year":"2018","journal-title":"CoRR"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1260\/2040-2295.4.3.371"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-75541-0_20"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46723-8_27"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-75541-0_26"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2014.7024999"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CIC.2005.1588077"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2016.02.006"},{"key":"ref5","first-page":"1093","article-title":"A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI","volume":"29","author":"zhuang","year":"2010","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2017.2743464"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2017.2743464"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2008.918330"},{"year":"2017","key":"ref1"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"ref20","article-title":"CFUN: Combining Faster R-CNN and U-net Network for Efficient Whole Heart Segmentation","author":"xu","year":"2018","journal-title":"CoRR"}],"event":{"name":"2019 International Conference on Systems, Signals and Image Processing (IWSSIP)","start":{"date-parts":[[2019,6,5]]},"location":"Osijek, Croatia","end":{"date-parts":[[2019,6,7]]}},"container-title":["2019 International Conference on Systems, Signals and Image Processing (IWSSIP)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/8774871\/8787208\/08787253.pdf?arnumber=8787253","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,18]],"date-time":"2022-07-18T14:44:55Z","timestamp":1658155495000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8787253\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,6]]},"references-count":20,"URL":"https:\/\/doi.org\/10.1109\/iwssip.2019.8787253","relation":{},"subject":[],"published":{"date-parts":[[2019,6]]}}}