{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:51:40Z","timestamp":1726851100195},"reference-count":81,"publisher":"IEEE","license":[{"start":{"date-parts":[[2021,7,11]],"date-time":"2021-07-11T00:00:00Z","timestamp":1625961600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,7,11]],"date-time":"2021-07-11T00:00:00Z","timestamp":1625961600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,7,11]],"date-time":"2021-07-11T00:00:00Z","timestamp":1625961600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/100002465","name":"Delta","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100002465","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,7,11]]},"DOI":"10.1109\/ivworkshops54471.2021.9669228","type":"proceedings-article","created":{"date-parts":[[2022,1,10]],"date-time":"2022-01-10T21:09:50Z","timestamp":1641848990000},"source":"Crossref","is-referenced-by-count":34,"title":["A Survey on Deep Domain Adaptation for LiDAR Perception"],"prefix":"10.1109","author":[{"given":"Larissa T.","family":"Triess","sequence":"first","affiliation":[]},{"given":"Mariella","family":"Dreissig","sequence":"additional","affiliation":[]},{"given":"Christoph B.","family":"Rist","sequence":"additional","affiliation":[]},{"given":"J.","family":"Marius Zollner","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref73","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00753"},{"key":"ref72","article-title":"Instance Normalization: The Missing Ingredient for Fast Stylization","author":"ulyanov","year":"2016"},{"key":"ref71","article-title":"Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks","author":"nam","year":"2018","journal-title":"NIPS"},{"key":"ref70","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01261-8_1"},{"key":"ref76","year":"0","journal-title":"PandaSet Public Large-Scale Dataset for Autonomous Driving"},{"key":"ref77","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2020.2972865"},{"key":"ref74","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2020.2973615"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/IV47402.2020.9304681"},{"key":"ref75","doi-asserted-by":"publisher","DOI":"10.3390\/app9194093"},{"key":"ref38","article-title":"LiDARNet: A Boundary-Aware Domain Adaptation Model for Lidar Point Cloud Semantic","author":"jiang","year":"2020"},{"key":"ref78","doi-asserted-by":"publisher","DOI":"10.1109\/ITSC45102.2020.9294540"},{"key":"ref79","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.88"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2012.6248074"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00780"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.220"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.244"},{"key":"ref37","article-title":"A2D2: Audi Autonomous Driving Dataset","author":"geyer","year":"2020"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/IV47402.2020.9304596"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01164"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00939"},{"key":"ref60","article-title":"Revisiting Batch Normalization for Practical Domain Adaptation","author":"li","year":"2017","journal-title":"ICLR Workshop"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00916"},{"key":"ref61","article-title":"Pseudo-labeling for Scalable 3D Object Detection","author":"caine","year":"2021"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-30671-7_3"},{"key":"ref28","article-title":"Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation","author":"morerio","year":"2018","journal-title":"ICLRE"},{"key":"ref64","article-title":"One-Sided Unsupervised Domain Mapping","author":"benaim","year":"2017","journal-title":"NIPS"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00218"},{"key":"ref65","article-title":"Unsupervised Cross-Domain Image Generation","author":"taigman","year":"2017","journal-title":"ICLRE"},{"key":"ref66","article-title":"Conditional Generative Adversarial Nets","author":"mirza","year":"2014"},{"key":"ref29","article-title":"CyCADA: Cycle Consistent Adversarial Domain Adaptation","author":"hoffman","year":"2018","journal-title":"ICML"},{"key":"ref67","article-title":"YOLOv3: An Incremental Improvement","author":"redmon","year":"2018"},{"key":"ref68","article-title":"On Learning Invariant Representations for Domain Adaptation","author":"zhao","year":"2019","journal-title":"PMLR"},{"key":"ref69","article-title":"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift","author":"ioffe","year":"2015","journal-title":"ICML"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1145\/3400066"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2009.191"},{"key":"ref20","doi-asserted-by":"crossref","DOI":"10.1145\/3326362","article-title":"Dynamic Graph CNN for Learning on Point Clouds","author":"wang","year":"2019","journal-title":"Transaction on Graphics"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.702"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.99"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00054"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00268"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00262"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.3390\/rs12111729"},{"key":"ref50","article-title":"Unsupervised Neural Sensor Models for Synthetic LiDAR Data Augmentation","author":"sallab","year":"2019","journal-title":"NIPS Workshop"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/IROS40897.2019.8968535"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1109\/3DV50981.2020.00087"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2019.00285"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01262"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1109\/IROS45743.2020.9341508"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1177\/0278364918767506"},{"key":"ref54","article-title":"ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework for LiDAR Point Cloud Segmentation","author":"zhao","year":"2021","journal-title":"AAAI"},{"key":"ref53","article-title":"Fukuoka datasets for place categorization","author":"mozos","year":"2019","journal-title":"IJRR"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/IROS51168.2021.9636747"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00472"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.01298"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01170"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00062"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/IROS40897.2019.8967762"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58604-1_1"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TRO.2021.3122069"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/IV47402.2020.9304824"},{"key":"ref81","article-title":"Progressive Graph Learning for Open-Set Domain Adaptation","author":"luo","year":"2020","journal-title":"ICML"},{"key":"ref17","article-title":"S3CNet: A Sparse Semantic Scene Completion Network for LiDAR Point Clouds","author":"agia","year":"2020","journal-title":"CoRL"},{"key":"ref18","article-title":"Deep Learning for 3D Point Clouds: A Survey","author":"guo","year":"2020","journal-title":"PAMI"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.16"},{"key":"ref80","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01228-1_10"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2020.3028503"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.3390\/technologies8020035"},{"key":"ref6","article-title":"Domain Adaptation for Vehicle Detection from Bird’s Eye View LiDAR Point Cloud Data","author":"saleh","year":"2019","journal-title":"ICCV Workshops"},{"key":"ref5","article-title":"PointDAN: A Multi-Scale 3D Domain Adaption Network for Point Cloud Representation","author":"qin","year":"2019","journal-title":"NIPS"},{"key":"ref8","article-title":"Domain Adaptation in LiDAR Semantic Segmentation","author":"alonso","year":"2020"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/IVS.2019.8814047"},{"key":"ref49","article-title":"LiDAR Sensor modeling and Data augmentation with GANs for Autonomous driving","author":"sallab","year":"2019","journal-title":"ICML Workshop"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2019.8793495"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/NILES50944.2020.9257903"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1016\/j.robot.2020.103647"},{"key":"ref48","article-title":"Complete & Label: A Domain Adaptation Approach to Semantic Segmentation of LiDAR Point Clouds","author":"yi","year":"2020"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/ITSC.2019.8917412"},{"key":"ref42","article-title":"CARLA: An Open Urban Driving Simulator","author":"dosovitskiy","year":"2017","journal-title":"CoRL"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00252"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/IVS.2019.8813771"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1145\/3206025.3206080"}],"event":{"name":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","location":"Nagoya, Japan","start":{"date-parts":[[2021,7,11]]},"end":{"date-parts":[[2021,7,17]]}},"container-title":["2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9669138\/9669201\/09669228.pdf?arnumber=9669228","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T16:57:04Z","timestamp":1652201824000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9669228\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7,11]]},"references-count":81,"URL":"https:\/\/doi.org\/10.1109\/ivworkshops54471.2021.9669228","relation":{},"subject":[],"published":{"date-parts":[[2021,7,11]]}}}