{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T08:55:01Z","timestamp":1730278501535,"version":"3.28.0"},"reference-count":28,"publisher":"IEEE","license":[{"start":{"date-parts":[[2020,9,20]],"date-time":"2020-09-20T00:00:00Z","timestamp":1600560000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2020,9,20]],"date-time":"2020-09-20T00:00:00Z","timestamp":1600560000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,9,20]],"date-time":"2020-09-20T00:00:00Z","timestamp":1600560000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020,9,20]]},"DOI":"10.1109\/itsc45102.2020.9294450","type":"proceedings-article","created":{"date-parts":[[2020,12,24]],"date-time":"2020-12-24T23:14:55Z","timestamp":1608851695000},"page":"1-8","source":"Crossref","is-referenced-by-count":26,"title":["Predictive maintenance leveraging machine learning for time-series forecasting in the maritime industry"],"prefix":"10.1109","author":[{"given":"Georgios","family":"Makridis","sequence":"first","affiliation":[]},{"given":"Dimosthenis","family":"Kyriazis","sequence":"additional","affiliation":[]},{"given":"Stathis","family":"Plitsos","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1080\/17445302.2018.1443694"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1080\/17445302.2018.1500189"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2016.10.015"},{"key":"ref13","doi-asserted-by":"crossref","first-page":"12058","DOI":"10.1088\/1742-6596\/978\/1\/012058","article-title":"Pca based feature reduction to improve the accuracy of decision tree c4. 5 classification","volume":"978","author":"nasution","year":"2018","journal-title":"Journal of Physics Conference Series"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1007\/s13748-011-0008-0"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-48057-2_9"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3219845"},{"key":"ref17","article-title":"Time series anomaly detection; detection of anomalous drops with limited features and sparse examples in noisy highly periodic data","author":"shipmon","year":"2017","journal-title":"arXiv preprint arXiv 1708 03359"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/DSAA.2015.7344872"},{"key":"ref19","article-title":"Lstm-based encoder-decoder for multi-sensor anomaly detection","author":"malhotra","year":"2016","journal-title":"arXiv preprint arXiv 1607 00148"},{"key":"ref28","article-title":"Statistical Methods for Machine Learning: Discover how to Transform Data into Knowledge with Python","author":"brownlee","year":"2018","journal-title":"Machine Learning Mastery"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1145\/1541880.1541882"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-35289-8"},{"key":"ref3","article-title":"Time series databases","author":"dunning","year":"2015","journal-title":"New Ways to Store and Access data"},{"key":"ref6","article-title":"Rad—outlier detection on big data","volume":"19","author":"wong","year":"2015","journal-title":"Web blog post The Netflix Tech Blog Netflix"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0152173"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1080\/20464177.2004.11020175"},{"key":"ref7","article-title":"Introducing practical and robust anomaly detection in a time series","volume":"15","author":"kejariwal","year":"2015","journal-title":"Twitter Engineering Blog Web"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.ress.2016.10.032"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/s00502-009-0639-z"},{"key":"ref1","article-title":"Slow steaming on 2-stroke engines","author":"gard","year":"2009","journal-title":"Loss Prevention Circular"},{"key":"ref20","article-title":"Long short term memory networks for anomaly detection in time series","volume":"89","author":"malhotra","year":"2015","journal-title":"Proceedings"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.3390\/e20120931"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2006.12.007"},{"key":"ref24","article-title":"Exploiting machine learning for ship systems anomaly detection and healthiness forecasting","author":"gkerekos","year":"2018","journal-title":"Smart Ship Technology 2018 Royal Institution of Naval Architects"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939785"},{"key":"ref26","first-page":"2814","article-title":"Understanding dropout","author":"baldi","year":"2013","journal-title":"Advances in neural information processing systems"},{"key":"ref25","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"srivastava","year":"2014","journal-title":"The Journal of Machine Learning Research"}],"event":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","start":{"date-parts":[[2020,9,20]]},"location":"Rhodes, Greece","end":{"date-parts":[[2020,9,23]]}},"container-title":["2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9294153\/9294168\/09294450.pdf?arnumber=9294450","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,28]],"date-time":"2022-06-28T21:51:55Z","timestamp":1656453115000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9294450\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9,20]]},"references-count":28,"URL":"https:\/\/doi.org\/10.1109\/itsc45102.2020.9294450","relation":{},"subject":[],"published":{"date-parts":[[2020,9,20]]}}}