{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T06:29:03Z","timestamp":1725776943895},"reference-count":26,"publisher":"IEEE","license":[{"start":{"date-parts":[[2023,10,7]],"date-time":"2023-10-07T00:00:00Z","timestamp":1696636800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,10,7]],"date-time":"2023-10-07T00:00:00Z","timestamp":1696636800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023,10,7]]},"DOI":"10.1109\/itc51656.2023.00029","type":"proceedings-article","created":{"date-parts":[[2023,12,22]],"date-time":"2023-12-22T19:19:11Z","timestamp":1703272751000},"page":"132-140","source":"Crossref","is-referenced-by-count":1,"title":["Improving Efficiency and Robustness of Gaussian Process Based Outlier Detection via Ensemble Learning"],"prefix":"10.1109","author":[{"given":"Makoto","family":"Eiki","sequence":"first","affiliation":[{"name":"Sony Semiconductor Manufacturing Corporation, Nagasaki TEC,Nagasaki,Japan,854-0065"}]},{"given":"Tomoki","family":"Nakamura","sequence":"additional","affiliation":[{"name":"Sony Semiconductor Manufacturing Corporation, Nagasaki TEC,Nagasaki,Japan,854-0065"}]},{"given":"Masuo","family":"Kajiyama","sequence":"additional","affiliation":[{"name":"Sony Semiconductor Manufacturing Corporation, Nagasaki TEC,Nagasaki,Japan,854-0065"}]},{"given":"Michiko","family":"Inoue","sequence":"additional","affiliation":[{"name":"Graduate School of Science and Technology, Nara Institute of Science and Technology,Ikoma,Japan,630-0192"}]},{"given":"Takashi","family":"Sato","sequence":"additional","affiliation":[{"name":"Graduate School of Informatics, Kyoto University,Kyoto,Japan,606-8501"}]},{"given":"Michihiro","family":"Shintani","sequence":"additional","affiliation":[{"name":"Graduate School of Science and Technology, Kyoto Institute of Technology,Kyoto,Japan,606-8585"}]}],"member":"263","reference":[{"article-title":"AEC-Q001 Rev-D, Guidelines for part average testing","volume-title":"Automotive Electronics Council","year":"2011","key":"ref1"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TEST.2016.7805829"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TCAD.2016.2621883"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/ETS.2018.8400701"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.7551\/mitpress\/3206.001.0001"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/APEC43599.2022.9773444"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.7873\/DATE.2013.123"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TEST.2014.7035325"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/ITC50571.2021.00018"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/ICCAD.2015.7372584"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ASPDAC.2017.7858358"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TEST.2018.8624821"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TSM.2004.827001"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TED.2007.911351"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/test.2000.894206"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/VTS.2002.1011113"},{"volume-title":"The kernel cookbook","author":"Duvenaud","key":"ref17"},{"key":"ref18","first-page":"1910","article-title":"Gaussian process regression with Student-t likelihood","volume-title":"Proceedings of Advances in Neural Information Processing Systems","author":"Vanhatalo","year":"2009"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TDMR.2020.2994291"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/VTS50974.2021.9441055"},{"key":"ref21","first-page":"95","article-title":"Hierarchical Gaussian process regression","volume-title":"Proceedings of Asian Conference on Machine Learning","author":"Park","year":"2010"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1145\/3297280.3297409"},{"key":"ref23","first-page":"973","article-title":"Pyro: Deep Universal Probabilistic Programming","author":"Bingham","year":"2018","journal-title":"Journal of Machine Learning Research"},{"key":"ref24","first-page":"8024","article-title":"Pytorch: An imperative style, high-performance deep learning library","volume-title":"Advances in Neural Information Processing Systems 32","author":"Paszke","year":"2019"},{"volume-title":"Multi-class Poisson disk sampling","year":"2009","author":"Wei","key":"ref25"},{"volume-title":"Advantest Corporation","key":"ref26","article-title":"ACS Edge"}],"event":{"name":"2023 IEEE International Test Conference (ITC)","start":{"date-parts":[[2023,10,7]]},"location":"Anaheim, CA, USA","end":{"date-parts":[[2023,10,15]]}},"container-title":["2023 IEEE International Test Conference (ITC)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10350036\/10350038\/10351109.pdf?arnumber=10351109","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,12]],"date-time":"2024-01-12T21:24:58Z","timestamp":1705094698000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10351109\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,7]]},"references-count":26,"URL":"https:\/\/doi.org\/10.1109\/itc51656.2023.00029","relation":{},"subject":[],"published":{"date-parts":[[2023,10,7]]}}}