{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T08:00:20Z","timestamp":1730275220849,"version":"3.28.0"},"reference-count":78,"publisher":"IEEE","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1109\/ismar55827.2022.00096","type":"proceedings-article","created":{"date-parts":[[2022,12,27]],"date-time":"2022-12-27T18:29:59Z","timestamp":1672165799000},"page":"777-786","source":"Crossref","is-referenced-by-count":7,"title":["TruVR: Trustworthy Cybersickness Detection using Explainable Machine Learning"],"prefix":"10.1109","author":[{"given":"Ripan Kumar","family":"Kundu","sequence":"first","affiliation":[{"name":"University of Missouri-Columbia"}]},{"given":"Rifatul","family":"Islam","sequence":"additional","affiliation":[{"name":"Northeastern University"}]},{"given":"Prasad","family":"Calyam","sequence":"additional","affiliation":[{"name":"University of Missouri-Columbia"}]},{"given":"Khaza Anuarul","family":"Hoque","sequence":"additional","affiliation":[{"name":"University of Missouri-Columbia"}]}],"member":"263","reference":[{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1089\/cyber.2020.0613"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1007\/s41133-019-0025-2"},{"issue":"2","key":"ref4","first-page":"18","article-title":"Stock market forecasting: artificial neural network and linear regression comparison in an emerging market","volume":"18","author":"Altay","year":"2005","journal-title":"Journal of Financial Management & Analysis"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2021.115736"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/nrsc52299.2021.9509831"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.3389\/frai.2020.00026"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1007\/s10055-021-00513-6"},{"key":"ref9","first-page":"527","article-title":"Virtual reality in the classroom-an exploration of hardware, management, content and pedagogy","volume-title":"Society for information technology & teacher education international conference","author":"Castaneda"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2022.3168190"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/tvcg.2022.3168190"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3007076"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.displa.2016.07.002"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/mmul.2022.3176142"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/MMUL.2022.3176142"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2021.3115901"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.3390\/jcm9061986"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1089\/g4h.2019.0045"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1007\/s10055-022-00636-4"},{"article-title":"Head tilt and its effects on cybersickness incidence in head mounted displays","year":"2022","author":"Garza","key":"ref20"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/acssc.2018.8645073"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/ccnc.2019.8651847"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/s10055-021-00524-3"},{"volume-title":"Physiological dataset","year":"2022","author":"Islam","key":"ref24"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/VRW50115.2020.00131"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/VRW52623.2021.00035"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/ISMAR52148.2021.00017"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ISMAR50242.2020.00066"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1016\/j.cegh.2019.12.010"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/vr.2019.8798334"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/VR.2019.8798334"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/GEM.2018.8516469"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1207\/s15327108ijap0303_3"},{"article-title":"Analysis of trustworthiness in machine learning and deep learning","year":"2021","author":"Kentour","key":"ref34"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1177\/0018720811403736"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijpsycho.2022.03.006"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.01068"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.3390\/jsan10030053"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1016\/j.datak.2020.101850"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1145\/333329.333344"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2019.2899186"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1007\/s12652-011-0052-4"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1145\/3411763.3445016"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1002\/sdtp.12267"},{"key":"ref45","first-page":"206540","article-title":"Explainable machine learning predictions to help anesthesiologists prevent hypoxemia during surgery","author":"Lundberg","year":"2017","journal-title":"bioRxiv"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1038\/s41551-018-0304-0"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1145\/3411764.3445701"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1108\/ITSE-10-2021-0193"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/ICGI54032.2021.9655281"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1007\/s13246-015-0379-9"},{"key":"ref51","article-title":"Interpretml: A unified framework for machine learning interpretability","author":"Nori","year":"2019","journal-title":"arXiv preprint arXiv:1909.09223"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2018.2793560"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1145\/3491102.3501847"},{"key":"ref54","first-page":"2825","article-title":"Scikit-learn: Machine learning in python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"the Journal of machine Learning research"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1016\/j.entcom.2021.100473"},{"volume-title":"Gameplay dataset","year":"2022","author":"Porcino","key":"ref56"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1007\/s42486-022-00103-8"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1145\/2642918.2647394"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1007\/s10055-016-0285-9"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1007\/s10055-020-00446-6"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.3389\/fbioe.2021.635661"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.3390\/electronics10121500"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-86993-9_31"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.1016\/j.apergo.2019.102958"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1177\/107118139704100292"},{"key":"ref66","doi-asserted-by":"publisher","DOI":"10.3390\/mti6050031"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1007\/s10055-022-00638-2"},{"key":"ref68","doi-asserted-by":"publisher","DOI":"10.1109\/tnnls.2020.3027314"},{"key":"ref69","doi-asserted-by":"publisher","DOI":"10.1145\/3351095.3372834"},{"key":"ref70","doi-asserted-by":"publisher","DOI":"10.1109\/ficloud49777.2021.00057"},{"key":"ref71","doi-asserted-by":"publisher","DOI":"10.1109\/TDSC.2021.3121216"},{"key":"ref72","doi-asserted-by":"publisher","DOI":"10.1109\/ccnc46108.2020.9045724"},{"key":"ref73","doi-asserted-by":"publisher","DOI":"10.1109\/AIVR52153.2021.00039"},{"key":"ref74","doi-asserted-by":"publisher","DOI":"10.1109\/vrw55335.2022.00122"},{"key":"ref75","doi-asserted-by":"publisher","DOI":"10.1109\/VR50410.2021.00060"},{"key":"ref76","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2017.02.017"},{"key":"ref77","doi-asserted-by":"publisher","DOI":"10.1080\/00016480510003192"},{"issue":"5","key":"ref78","first-page":"1017","article-title":"Oversampling method for imbalanced classification","volume":"34","author":"Zheng","year":"2015","journal-title":"Computing and Informatics"},{"key":"ref79","doi-asserted-by":"publisher","DOI":"10.1109\/iccsnt47585.2019.8962457"}],"event":{"name":"2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","start":{"date-parts":[[2022,10,17]]},"location":"Singapore, Singapore","end":{"date-parts":[[2022,10,21]]}},"container-title":["2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9994794\/9994855\/09995115.pdf?arnumber=9995115","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T12:40:06Z","timestamp":1706791206000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9995115\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10]]},"references-count":78,"URL":"https:\/\/doi.org\/10.1109\/ismar55827.2022.00096","relation":{},"subject":[],"published":{"date-parts":[[2022,10]]}}}