{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,27]],"date-time":"2024-12-27T05:16:26Z","timestamp":1735276586710,"version":"3.32.0"},"reference-count":37,"publisher":"IEEE","license":[{"start":{"date-parts":[[2024,10,14]],"date-time":"2024-10-14T00:00:00Z","timestamp":1728864000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,14]],"date-time":"2024-10-14T00:00:00Z","timestamp":1728864000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024,10,14]]},"DOI":"10.1109\/iros58592.2024.10801584","type":"proceedings-article","created":{"date-parts":[[2024,12,25]],"date-time":"2024-12-25T19:17:39Z","timestamp":1735154259000},"page":"2632-2638","source":"Crossref","is-referenced-by-count":0,"title":["BAM: Box Abstraction Monitors for Real-time OoD Detection in Object Detection"],"prefix":"10.1109","author":[{"given":"Changshun","family":"Wu","sequence":"first","affiliation":[{"name":"Université Grenoble Alpes,Grenoble,France"}]},{"given":"Weicheng","family":"He","sequence":"additional","affiliation":[{"name":"Université Grenoble Alpes,Grenoble,France"}]},{"given":"Chih-Hong","family":"Cheng","sequence":"additional","affiliation":[{"name":"Chalmers & University of Gothenburg,Gothenburg,Sweden"}]},{"given":"Xiaowei","family":"Huang","sequence":"additional","affiliation":[{"name":"University of Liverpool,Liverpool,UK"}]},{"given":"Saddek","family":"Bensalem","sequence":"additional","affiliation":[{"name":"Université Grenoble Alpes,Grenoble,France"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cosrev.2020.100270"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00823"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/tiv.2024.3428415"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1145\/3561048"},{"issue":"9","key":"ref5","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3555803","article-title":"Trustworthy ai: From principles to practices","volume":"55","author":"Li","year":"2023","journal-title":"ACM Computing Surveys"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-19839-7_24"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298640"},{"article-title":"A baseline for detecting misclassified and out-of-distribution examples in neural networks","volume-title":"ICLR","author":"Hendrycks","key":"ref8"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-024-02117-4"},{"article-title":"VOS: Learning what you don\u2019t know by virtual outlier synthesis","volume-title":"ICLR","author":"Du","key":"ref10"},{"article-title":"Enhancing the reliability of out-of-distribution image detection in neural networks","volume-title":"ICLR","author":"Liang","key":"ref11"},{"key":"ref12","first-page":"21464","article-title":"Energy-based out-of-distribution detection","volume":"33","author":"Liu","year":"2020","journal-title":"NeurIPS"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/IROS55552.2023.10341826"},{"article-title":"Umap: Uniform manifold approximation and projection for dimension reduction","year":"2018","author":"McInnes","key":"ref14"},{"key":"ref15","first-page":"2433","article-title":"Outside the box: Abstraction-based monitoring of neural networks","volume-title":"ECAI","author":"Henzinger"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.23919\/DATE48585.2020.9116205"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-19992-9_26"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-44267-4_2"},{"key":"ref19","article-title":"Faster R-CNN: Towards real-time object detection with region proposal networks","volume":"28","author":"Ren","year":"2015","journal-title":"NeurIPS"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2012.6248074"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00271"},{"issue":"234","key":"ref22","article-title":"A unified survey on anomaly, novelty, open-set, and out of-distribution detection: Solutions and future challenges","author":"Salehi","year":"2022","journal-title":"Transactions on Machine Learning Research"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2018.8460700"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA40945.2020.9196544"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/ITSC.2019.8917494"},{"key":"ref26","first-page":"20434","article-title":"Siren: Shaping representations for detecting out-of-distribution objects","volume":"35","author":"Du","year":"2022","journal-title":"NeurIPS"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2021.3130976"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00667"},{"key":"ref29","first-page":"3183","article-title":"Evidential deep learning to quantify classification uncertainty","volume":"31","author":"Sensoy","year":"2018","journal-title":"NeurIPS"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TIT.1982.1056489"},{"key":"ref31","first-page":"8024","article-title":"Pytorch: An imperative style, high-performance deep learning library","volume":"32","author":"Paszke","year":"2019","journal-title":"NeurIPS"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.48550\/arXiv.1201.0490"},{"article-title":"Detectron2","year":"2019","author":"Wu","key":"ref33"},{"key":"ref34","article-title":"Fiftyone","volume-title":"GitHub Note","author":"Moore","year":"2020"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-020-01316-z"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-009-0275-4"}],"event":{"name":"2024 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS)","start":{"date-parts":[[2024,10,14]]},"location":"Abu Dhabi, United Arab Emirates","end":{"date-parts":[[2024,10,18]]}},"container-title":["2024 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/10801246\/10801290\/10801584.pdf?arnumber=10801584","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,12,26]],"date-time":"2024-12-26T06:57:40Z","timestamp":1735196260000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10801584\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,14]]},"references-count":37,"URL":"https:\/\/doi.org\/10.1109\/iros58592.2024.10801584","relation":{},"subject":[],"published":{"date-parts":[[2024,10,14]]}}}