{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T06:49:10Z","timestamp":1730270950955,"version":"3.28.0"},"reference-count":26,"publisher":"IEEE","license":[{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023,10,1]]},"DOI":"10.1109\/iros55552.2023.10342483","type":"proceedings-article","created":{"date-parts":[[2023,12,13]],"date-time":"2023-12-13T19:17:55Z","timestamp":1702495075000},"page":"7249-7255","source":"Crossref","is-referenced-by-count":0,"title":["Pseudo Inputs Optimisation for Efficient Gaussian Process Distance Fields"],"prefix":"10.1109","author":[{"given":"Lan","family":"Wu","sequence":"first","affiliation":[{"name":"Robotics Institute, University of Technology Sydney,Faculty of Engineering and IT,Ultimo,NSW,Australia,2007"}]},{"given":"Cedric Le","family":"Gentil","sequence":"additional","affiliation":[{"name":"Robotics Institute, University of Technology Sydney,Faculty of Engineering and IT,Ultimo,NSW,Australia,2007"}]},{"given":"Teresa","family":"Vidal-Calleja","sequence":"additional","affiliation":[{"name":"Robotics Institute, University of Technology Sydney,Faculty of Engineering and IT,Ultimo,NSW,Australia,2007"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.7551\/mitpress\/3206.001.0001"},{"journal-title":"Gaussian process implicit surfaces","year":"2006","author":"Williams","key":"ref2"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2019.8794324"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2021.3061356"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TRO.2023.3296982"},{"volume-title":"Accurate gaussian process distance fields with applications to echolocation and mapping","year":"2023","author":"Le Gentil","key":"ref6"},{"key":"ref7","first-page":"1257","article-title":"Sparse gaussian processes using pseudo-inputs","volume-title":"NeurIPS","volume":"18","author":"Snelson","year":"2006"},{"key":"ref8","article-title":"Variational learning of inducing variables in sparse gaussian processes","volume-title":"Artificial intelligence and statistics","author":"Titsias","year":"2009"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2016.7759784"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/IROS40897.2019.8968199"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2017.8202315"},{"key":"ref12","article-title":"Implicit geometric regularization for learning shapes","author":"Gropp","year":"2020","journal-title":"arXiv preprint"},{"key":"ref13","article-title":"Sampling-free obstacle gradients and reactive planning in neural radiance fields (nerf)","author":"Pantic","year":"2022","journal-title":"arXiv preprint"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.15607\/RSS.2022.XVIII.012"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2022.3189434"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2957109"},{"key":"ref17","first-page":"117","article-title":"Hierarchical gaussian processes for robust and accurate map building","volume-title":"Australasian Conference on Robotics and Automation (ACRA)","author":"Kim","year":"2015"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2012.6225355"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.datak.2007.03.016"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1145\/1409060.1409079"},{"key":"ref21","article-title":"Sparse greedy gaussian process regression","volume-title":"NeurIPS","volume":"13","author":"Smola","year":"2000"},{"key":"ref22","article-title":"Gaussian processes for big data","volume-title":"In Uncertainty in Artificial Intelligence (UAI)","author":"J","year":"2013"},{"key":"ref23","article-title":"Using the nystr\u00f6rn method to speed up kernel machines","volume":"13","author":"Williams","year":"2000","journal-title":"NeurIPS"},{"volume-title":"Covariance kernels for fast automatic pattern discovery and extrapolation with Gaussian processes","year":"2014","author":"Wilson","key":"ref24"},{"key":"ref25","first-page":"1775","article-title":"Kernel interpolation for scalable structured gaussian processes (kiss-gp)","volume-title":"International Conference on Machine Learning","author":"Wilson","year":"2015"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2021.3061324"}],"event":{"name":"2023 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS)","start":{"date-parts":[[2023,10,1]]},"location":"Detroit, MI, USA","end":{"date-parts":[[2023,10,5]]}},"container-title":["2023 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10341341\/10341342\/10342483.pdf?arnumber=10342483","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,24]],"date-time":"2024-01-24T04:26:38Z","timestamp":1706070398000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10342483\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,1]]},"references-count":26,"URL":"https:\/\/doi.org\/10.1109\/iros55552.2023.10342483","relation":{},"subject":[],"published":{"date-parts":[[2023,10,1]]}}}