{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T06:20:30Z","timestamp":1730269230069,"version":"3.28.0"},"reference-count":52,"publisher":"IEEE","license":[{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020,5]]},"DOI":"10.1109\/ipdps47924.2020.00033","type":"proceedings-article","created":{"date-parts":[[2020,7,14]],"date-time":"2020-07-14T17:18:30Z","timestamp":1594747110000},"page":"234-243","source":"Crossref","is-referenced-by-count":82,"title":["Experience-Driven Computational Resource Allocation of Federated Learning by Deep Reinforcement Learning"],"prefix":"10.1109","author":[{"given":"Yufeng","family":"Zhan","sequence":"first","affiliation":[]},{"given":"Peng","family":"Li","sequence":"additional","affiliation":[]},{"given":"Song","family":"Guo","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"article-title":"Protection against reconstruction and its applications in private federated learning","year":"2018","author":"bhowmick","key":"ref39"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/ICC.2019.8761315"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2016.2626285"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2017.8057116"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2016.7524340"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TETC.2017.2693286"},{"journal-title":"CoRR","article-title":"On the convergence of federated optimization in heterogeneous networks","year":"2018","author":"li","key":"ref37"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1016\/j.comnet.2017.03.015"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2016.2604814"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/TC.2016.2620469"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2016.7524520"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2019.2922285"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2017.8057196"},{"journal-title":"CoRR","article-title":"Federated learning: Strategies for improving communication efficiency","year":"2016","author":"konecn\u00fd","key":"ref2"},{"key":"ref1","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","author":"mcmahan","year":"2017","journal-title":"Proc of AISTATS"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1145\/2785956.2787486"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/TNET.2013.2291681"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1145\/505202.505228"},{"key":"ref24","first-page":"1928","article-title":"Asynchronous methods for deep reinforcement learning","author":"mnih","year":"2016","journal-title":"Proc of ICML"},{"key":"ref23","first-page":"387","article-title":"Deterministic policy gradient algorithms","author":"silver","year":"2014","journal-title":"Proc of ICML"},{"year":"0","key":"ref26","article-title":"4g\/lte dataset"},{"key":"ref25","first-page":"1889","article-title":"Trust region policy optimization","author":"schulman","year":"2015","journal-title":"Proc of ICML"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1145\/3230543.3230551"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1145\/3341302.3342080"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1145\/3356250.3360038"},{"journal-title":"Proc of ICLR","article-title":"Learning differentially private recurrent language models","year":"2018","author":"mcmahan","key":"ref10"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/LCOMM.2016.2601087"},{"article-title":"The secret sharer: Measuring unintended neural network memorization & extracting secrets","year":"2018","author":"carlini","key":"ref40"},{"year":"0","key":"ref12","article-title":"Hsdpa dataset"},{"key":"ref13","first-page":"1","article-title":"Energy efficiency of mobile clients in cloud computing","author":"miettinen","year":"2010","journal-title":"Proc of USENIX HotCloud"},{"journal-title":"CoRR","article-title":"Revisiting distributed synchronous SGD","year":"2016","author":"chen","key":"ref14"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1007\/BF01130406"},{"key":"ref16","first-page":"1008","article-title":"Actor-critic algorithms","author":"konda","year":"2000","journal-title":"Proc NeurIPS"},{"article-title":"Deep reinforcement learning in large discrete action spaces","year":"2015","author":"dulac-arnold","key":"ref17"},{"journal-title":"Reinforcement Learning An Introduction","year":"2018","author":"sutton","key":"ref18"},{"article-title":"Proximal policy optimization algorithms","year":"2017","author":"schulman","key":"ref19"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2019.8737464"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2018.8486403"},{"key":"ref6","first-page":"1","article-title":"Towards federated learning at scale: System design","author":"bonawitz","year":"2019","journal-title":"Proc of SysML"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1145\/3154503"},{"article-title":"Federated learning: Strategies for improving communication efficiency","year":"2016","author":"kone?n?","key":"ref8"},{"article-title":"Federated learning: Collaborative machine learning without centralized training data","year":"0","author":"arcas","key":"ref7"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2019.2904353"},{"article-title":"Federated optimization: Distributed machine learning for on-device intelligence","year":"2016","author":"kone?n?","key":"ref9"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1145\/3005745.3005750"},{"key":"ref45","first-page":"1","article-title":"Prioritized experience replay","author":"schaul","year":"2016","journal-title":"Proc of ICLR"},{"key":"ref48","doi-asserted-by":"crossref","first-page":"705","DOI":"10.14778\/3184470.3184474","article-title":"Model-free control for distributed stream data processing using deep reinforcement learning","volume":"11","author":"li","year":"2018","journal-title":"Proceedings of the VLDB Endowment"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2018.8485853"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3133982"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2019.8737416"},{"key":"ref44","first-page":"2094","article-title":"Deep reinforcement learning with double q-learning","author":"van hasselt","year":"2016","journal-title":"Proc Of AAAI"},{"key":"ref43","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1038\/nature14236","article-title":"Human-level control through deep reinforcement learning","volume":"518","author":"mnih","year":"2015","journal-title":"Nature"}],"event":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","start":{"date-parts":[[2020,5,18]]},"location":"New Orleans, LA, USA","end":{"date-parts":[[2020,5,22]]}},"container-title":["2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9136850\/9139768\/09139873.pdf?arnumber=9139873","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,28]],"date-time":"2022-06-28T17:57:54Z","timestamp":1656439074000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9139873\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5]]},"references-count":52,"URL":"https:\/\/doi.org\/10.1109\/ipdps47924.2020.00033","relation":{},"subject":[],"published":{"date-parts":[[2020,5]]}}}