{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T05:37:15Z","timestamp":1730266635547,"version":"3.28.0"},"reference-count":37,"publisher":"IEEE","license":[{"start":{"date-parts":[[2024,6,30]],"date-time":"2024-06-30T00:00:00Z","timestamp":1719705600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,6,30]],"date-time":"2024-06-30T00:00:00Z","timestamp":1719705600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/100009950","name":"Ministry of Education","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100009950","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024,6,30]]},"DOI":"10.1109\/ijcnn60899.2024.10650842","type":"proceedings-article","created":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T17:35:05Z","timestamp":1725903305000},"page":"1-8","source":"Crossref","is-referenced-by-count":0,"title":["Dynamic Modeling of Patient Vital Signs: Leveraging Markov Chain Principles with Neural Networks for Irregular Time-Series Prediction"],"prefix":"10.1109","author":[{"given":"Xin Yun","family":"Choy","sequence":"first","affiliation":[{"name":"Nanyang Technological University,School of Computer Science and Engineering,Singapore,Singapore"}]},{"given":"Li","family":"Rong Wang","sequence":"additional","affiliation":[{"name":"Nanyang Technological University,School of Computer Science and Engineering,Singapore,Singapore"}]},{"given":"Thomas C.","family":"Henderson","sequence":"additional","affiliation":[{"name":"University of Utah,School of Computing,Salt Lake City,USA"}]},{"given":"Kelvin","family":"Li","sequence":"additional","affiliation":[{"name":"Tan Tock Seng Hospital,Department of Ophthalmology,Singapore,Singapore"}]},{"given":"Yih Yng","family":"Ng","sequence":"additional","affiliation":[{"name":"Centre of Healthcare Innovation,Digital and Smart Health Office,Singapore,Singapore"}]},{"given":"Xiuyi","family":"Fan","sequence":"additional","affiliation":[{"name":"Nanyang Technological University,Lee Kong Chian School of Medicine,Singapore,Singapore"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jen.2012.07.023"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1111\/ijn.12329"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.7326\/0003-4819-158-5-201303051-00009"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1002\/widm.1485"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.cmpb.2019.06.010"},{"key":"ref6","first-page":"5937","article-title":"Learning from irregularly-sampled time series: A missing data perspective","volume-title":"International Conference on Machine Learning","author":"Li"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.jcrc.2013.08.022"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/EMBC.2017.8037651"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2021.02.046"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1002\/9781119013563"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v32i1.11635"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1145\/3516367"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/PRNI.2018.8423955"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/322"},{"issue":"56","key":"ref15","first-page":"253","article-title":"Modeling missing data in clinical time series with rnns","volume":"56","author":"Lipton","year":"2016","journal-title":"Machine Learning for Healthcare"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-35288-2_22"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2018.08.067"},{"article-title":"Recover missing sensor data with iterative imputing network","volume-title":"Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence","author":"Zhou","key":"ref18"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2019.2909038"},{"key":"ref20","article-title":"Recurrent neural networks for missing or asynchronous data","volume":"8","author":"Bengio","year":"1995","journal-title":"Advances in neural information processing systems"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.3390\/w9100796"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1016\/j.artmed.2013.01.003"},{"key":"ref23","first-page":"1651","article-title":"Gp-vae: Deep probabilistic time series imputation","volume-title":"International conference on artificial intelligence and statistics","author":"Fortuin"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1145\/1390156.1390235"},{"key":"ref25","first-page":"484","article-title":"Classification of sparse and irregularly sampled time series with mixtures of expected gaussian kernels and random features","author":"Li","year":"2015","journal-title":"UAI"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-018-24271-9"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1145\/3097983.3097997"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1706.03762"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v37i6.25876"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1038\/sdata.2016.35"},{"key":"ref31","first-page":"245","article-title":"Predicting in-hospital mortality of icu patients: The physionet\/computing in cardiology challenge 2012","volume-title":"2012 Computing in Cardiology.","author":"Silva","year":"2012"},{"journal-title":"Multi-time attention networks for irregularly sampled time series","year":"2021","author":"Shukla","key":"ref32"},{"issue":"2","key":"ref33","volume-title":"Markov chains.","author":"Norris","year":"1998"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1080\/23737484.2017.1361366"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1016\/0304-4076(88)90048-6"},{"article-title":"Pytorch: An imperative style, highperformance deep learning library","year":"2019","author":"Paszke","key":"ref36"},{"issue":"C2XW26","key":"ref37","first-page":"2","article-title":"Mimic-iii clinical database (version 1.4)","volume":"10","author":"Johnson","year":"2016","journal-title":"PhysioNet"}],"event":{"name":"2024 International Joint Conference on Neural Networks (IJCNN)","start":{"date-parts":[[2024,6,30]]},"location":"Yokohama, Japan","end":{"date-parts":[[2024,7,5]]}},"container-title":["2024 International Joint Conference on Neural Networks (IJCNN)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/10649807\/10649898\/10650842.pdf?arnumber=10650842","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T06:06:04Z","timestamp":1725948364000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10650842\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6,30]]},"references-count":37,"URL":"https:\/\/doi.org\/10.1109\/ijcnn60899.2024.10650842","relation":{},"subject":[],"published":{"date-parts":[[2024,6,30]]}}}