{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T05:28:48Z","timestamp":1730266128332,"version":"3.28.0"},"reference-count":31,"publisher":"IEEE","license":[{"start":{"date-parts":[[2022,7,18]],"date-time":"2022-07-18T00:00:00Z","timestamp":1658102400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,7,18]],"date-time":"2022-07-18T00:00:00Z","timestamp":1658102400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,7,18]]},"DOI":"10.1109\/ijcnn55064.2022.9892363","type":"proceedings-article","created":{"date-parts":[[2022,9,30]],"date-time":"2022-09-30T19:56:04Z","timestamp":1664567764000},"page":"1-8","source":"Crossref","is-referenced-by-count":4,"title":["Multi-scale Fusion and Global Semantic Encoding for Affordance Detection"],"prefix":"10.1109","author":[{"given":"Yang","family":"Zhang","sequence":"first","affiliation":[{"name":"Hangzhou Innovation Institute, Beihang University,Hangzhou,China"}]},{"given":"Huiyong","family":"Li","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering, Beihang University,Beijing,China"}]},{"given":"Tao","family":"Ren","sequence":"additional","affiliation":[{"name":"Hangzhou Innovation Institute, Beihang University,Hangzhou,China"}]},{"given":"Yuanbo","family":"Dou","sequence":"additional","affiliation":[{"name":"Hangzhou Innovation Institute, Beihang University,Hangzhou,China"}]},{"given":"Qingfeng","family":"Li","sequence":"additional","affiliation":[{"name":"Hangzhou Innovation Institute, Beihang University,Hangzhou,China"}]}],"member":"263","reference":[{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-015-0816-y"},{"key":"ref30","doi-asserted-by":"crossref","first-page":"4070","DOI":"10.1109\/LRA.2019.2930364","article-title":"Toward affordance detection and ranking on novel objects for real-world robotic manipulation","volume":"4","author":"fu","year":"2019","journal-title":"IEEE l of Robotics and Automation"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2015.7139369"},{"journal-title":"Digital Image Computing Techniques and Applications","article-title":"Learning affordance segmentation: An investigative study","year":"2020","author":"minh","key":"ref11"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2018.8460902"},{"journal-title":"IEEE\/RSJ Int Conf Intell Robots Syst","article-title":"Object-based affordances detection with convolutional neural networks and dense conditional random fields","year":"0","author":"anh","key":"ref13"},{"journal-title":"TPAMI","article-title":"Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs","year":"2017","author":"chen","key":"ref14"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1023\/B:VISI.0000029664.99615.94"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"ref17","first-page":"1","article-title":"Visual categorization with bags of keypoints","volume":"1","author":"csurka","year":"0","journal-title":"Workshop on Statistical Learning in Computer Vision ECCV"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2010.5540039"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00584"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2017.2711011"},{"journal-title":"The Ecological Approach to Visual Perception","year":"1979","author":"gibson","key":"ref4"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-15561-1_11"},{"key":"ref3","first-page":"248","article-title":"How to evaluate foreground maps","author":"ran","year":"0","journal-title":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR)"},{"key":"ref6","first-page":"1","article-title":"Scenecut: joint geometric and object segmentation for indoor scenes","author":"trung","year":"0","journal-title":"IEEE Conference on Robotics and Automation (ICRA)"},{"journal-title":"ArXiv Preprint","article-title":"Resnest: Split-attention networks","year":"2020","author":"hang","key":"ref29"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46493-0_12"},{"journal-title":"Workshop in the IEEE International Conference on Robotics and Automation","article-title":"Affordance prediction via learned object attributes","year":"0","author":"tucker","key":"ref8"},{"key":"ref7","first-page":"2765","article-title":"Detecting object affordances with convolutional neural networks","author":"nguyen","year":"0","journal-title":"the IEEE\/RSJ International Conference on Intelligent Robots and Systems"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2015.7139369"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TRO.2007.914848"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2017.8206484"},{"key":"ref20","article-title":"Object affordance detection with relationship-aware network[J]","volume":"32","author":"xue","year":"2020","journal-title":"Neural Computing and Applications"},{"key":"ref22","article-title":"Squeeze-and-Excitation Networks[J]","volume":"pp","author":"jie","year":"2017","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2021.01.018"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.552"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.309"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2015.7139369"},{"key":"ref25","doi-asserted-by":"crossref","first-page":"705","DOI":"10.1177\/0278364914549607","article-title":"Deep learning for detecting robotic grasps","volume":"34","author":"lenz","year":"2013","journal-title":"Int J Robot Res"}],"event":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","start":{"date-parts":[[2022,7,18]]},"location":"Padua, Italy","end":{"date-parts":[[2022,7,23]]}},"container-title":["2022 International Joint Conference on Neural Networks (IJCNN)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9891857\/9889787\/09892363.pdf?arnumber=9892363","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,4]],"date-time":"2022-11-04T01:27:07Z","timestamp":1667525227000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9892363\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,18]]},"references-count":31,"URL":"https:\/\/doi.org\/10.1109\/ijcnn55064.2022.9892363","relation":{},"subject":[],"published":{"date-parts":[[2022,7,18]]}}}