{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T05:27:59Z","timestamp":1730266079192,"version":"3.28.0"},"reference-count":39,"publisher":"IEEE","license":[{"start":{"date-parts":[[2022,7,18]],"date-time":"2022-07-18T00:00:00Z","timestamp":1658102400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,7,18]],"date-time":"2022-07-18T00:00:00Z","timestamp":1658102400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,7,18]]},"DOI":"10.1109\/ijcnn55064.2022.9892288","type":"proceedings-article","created":{"date-parts":[[2022,9,30]],"date-time":"2022-09-30T15:56:04Z","timestamp":1664553364000},"page":"1-8","source":"Crossref","is-referenced-by-count":0,"title":["An Adapted GRASP Approach for Hyperparameter Search on Deep Networks Applied to Tabular Data"],"prefix":"10.1109","author":[{"given":"Andersson A.","family":"Silva","sequence":"first","affiliation":[{"name":"Centro de Informática, Universidade Federal de Pernambuco,Recife,Brasil"}]},{"given":"Amanda S.","family":"Xavier","sequence":"additional","affiliation":[{"name":"Centro de Informática, Universidade Federal de Pernambuco,Recife,Brasil"}]},{"given":"David","family":"Macedo","sequence":"additional","affiliation":[{"name":"Centro de Informática, Universidade Federal de Pernambuco,Recife,Brasil"}]},{"given":"Cleber","family":"Zanchettin","sequence":"additional","affiliation":[{"name":"Centro de Informática, Universidade Federal de Pernambuco,Recife,Brasil"}]},{"given":"Adriano L. I.","family":"Oliveira","sequence":"additional","affiliation":[{"name":"Centro de Informática, Universidade Federal de Pernambuco,Recife,Brasil"}]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1007\/0-387-25383-1_2"},{"journal-title":"UCI Machine Learning Repository","year":"2017","author":"dua","key":"ref38"},{"key":"ref33","article-title":"Pytorch: An imperative style, high-performance deep learning library","author":"paszke","year":"2019","journal-title":"ArXiv Preprint"},{"key":"ref32","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2014","journal-title":"ArXiv Preprint"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1111\/j.1475-3995.2009.00663.x"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1016\/0167-6377(89)90002-3"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.3390\/s19245524"},{"journal-title":"UCI Machine Learning Repository","year":"2017","author":"dheeru","key":"ref36"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1016\/j.chemolab.2013.10.012"},{"journal-title":"The MNIST Database of Handwritten Digits","year":"2009","author":"lecun","key":"ref34"},{"key":"ref10","article-title":"Tabular data: Deep learning is not all you need","author":"shwartz-ziv","year":"2021","journal-title":"ArXiv Preprint"},{"key":"ref11","article-title":"Regularization is all you need: Simple neural nets can excel on tabular data","author":"kadra","year":"2021","journal-title":"ArXiv Preprint"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1145\/3368308.3415382"},{"key":"ref13","article-title":"Deep neural networks and tabular data: A survey","author":"borisov","year":"2021","journal-title":"ArXiv Preprint"},{"key":"ref14","article-title":"A population-based hybrid approach to hyperparameter optimization for neural networks","author":"serqueira","year":"2020","journal-title":"ArXiv Preprint"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2018.00038"},{"key":"ref16","article-title":"Practical bayesian optimization of machine learning algorithms","volume":"25","author":"snoek","year":"2012","journal-title":"Advances in neural information processing systems"},{"key":"ref17","first-page":"2171","article-title":"Scalable bayesian optimization using deep neural networks","author":"snoek","year":"0","journal-title":"International Conference on Machine Learning"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1016\/j.swevo.2019.06.002"},{"key":"ref19","first-page":"1","article-title":"Evaluating the bond strength of frp-to-concrete composite joints using metaheuristic-optimized least-squares support vector regression","author":"zhang","year":"2020","journal-title":"Neural Computing and Applications"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2021.01.052"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-02934-0_2"},{"key":"ref27","article-title":"Modeling tabular data using conditional gan","author":"xu","year":"2019","journal-title":"ArXiv Preprint"},{"key":"ref3","first-page":"1189","article-title":"Greedy function approximation: a gradient boosting machine","author":"friedman","year":"2001","journal-title":"Annals of Statistics"},{"key":"ref6","first-page":"3146","article-title":"Lightgbm: A highly efficient gradient boosting decision tree","volume":"30","author":"ke","year":"2017","journal-title":"Advances in neural information processing systems"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1016\/0305-0548(86)90048-1"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939785"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.29007\/qfmh"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i8.16826"},{"journal-title":"Tabnn A universal neural network solution for tabular data","year":"2018","author":"ke","key":"ref2"},{"key":"ref9","article-title":"Neural oblivious decision ensembles for deep learning on tabular data","author":"popov","year":"2019","journal-title":"ArXiv Preprint"},{"journal-title":"NOTES FROM THE AI FRONTIER INSIGHTS FROM HUNDREDS OF USE CASES","year":"2018","author":"chui","key":"ref1"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/ICACCCN.2018.8748691"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/ICECCME52200.2021.9590907"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2007.10.013"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1007\/0-306-48056-5_8"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/s11063-020-10234-7"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1007\/s11235-010-9289-z"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1287\/educ.1080.0045"}],"event":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","start":{"date-parts":[[2022,7,18]]},"location":"Padua, Italy","end":{"date-parts":[[2022,7,23]]}},"container-title":["2022 International Joint Conference on Neural Networks (IJCNN)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9891857\/9889787\/09892288.pdf?arnumber=9892288","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,3]],"date-time":"2022-11-03T21:26:52Z","timestamp":1667510812000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9892288\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,18]]},"references-count":39,"URL":"https:\/\/doi.org\/10.1109\/ijcnn55064.2022.9892288","relation":{},"subject":[],"published":{"date-parts":[[2022,7,18]]}}}