{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T05:26:37Z","timestamp":1730265997206,"version":"3.28.0"},"reference-count":38,"publisher":"IEEE","license":[{"start":{"date-parts":[[2023,6,18]],"date-time":"2023-06-18T00:00:00Z","timestamp":1687046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,6,18]],"date-time":"2023-06-18T00:00:00Z","timestamp":1687046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023,6,18]]},"DOI":"10.1109\/ijcnn54540.2023.10191326","type":"proceedings-article","created":{"date-parts":[[2023,8,2]],"date-time":"2023-08-02T17:30:03Z","timestamp":1690997403000},"page":"1-8","source":"Crossref","is-referenced-by-count":1,"title":["Cross-Domain Transformation for Outlier Detection on Tabular Datasets"],"prefix":"10.1109","author":[{"given":"Dayananda","family":"Herurkar","sequence":"first","affiliation":[{"name":"German Research Center for Artificial Intelligence (DFKI),Kaiserslautern,Germany"}]},{"given":"Timur","family":"Sattarov","sequence":"additional","affiliation":[{"name":"Deutsche Bundesbank, Frankfurt am Main,Germany"}]},{"given":"J\u00f6rn","family":"Hees","sequence":"additional","affiliation":[{"name":"German Research Center for Artificial Intelligence (DFKI),Kaiserslautern,Germany"}]},{"given":"Sebastian","family":"Palacio","sequence":"additional","affiliation":[{"name":"German Research Center for Artificial Intelligence (DFKI),Kaiserslautern,Germany"}]},{"given":"Federico","family":"Raue","sequence":"additional","affiliation":[{"name":"German Research Center for Artificial Intelligence (DFKI),Kaiserslautern,Germany"}]},{"given":"Andreas","family":"Dengel","sequence":"additional","affiliation":[{"name":"German Research Center for Artificial Intelligence (DFKI),Kaiserslautern,Germany"}]}],"member":"263","reference":[{"key":"ref13","article-title":"One model to learn them all","volume":"abs 1706 5137","author":"kaiser","year":"2017","journal-title":"CoRR"},{"journal-title":"Synthetic Data Metrics DataCebo Inc","year":"2022","key":"ref35"},{"key":"ref12","volume":"abs 2010 11113","author":"bartz","year":"2020","journal-title":"One model to reconstruct them all A novel way to use the stochastic noise in stylegan"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1039\/c3ay41907j"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2020.3014246"},{"key":"ref37","article-title":"Benchmarking datasets for anomaly-based network intrusion detection: KDD CUP 99 alternatives","author":"divekar","year":"2018","journal-title":"2018 IEEE 3rd International Conference on Computing Communication and Security (ICCCS)"},{"key":"ref14","article-title":"Differential privacy and machine learning: a survey and review","volume":"abs 1412 7584","author":"ji","year":"2014","journal-title":"CoRR"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.1951.10500769"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1080\/15376494.2019.1609630"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1016\/S0167-8655(03)00003-5"},{"key":"ref11","first-page":"2672","article-title":"Generative adversarial nets","author":"goodfellow","year":"0","journal-title":"Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2 ser NIPS'14"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1038\/nbt0308-303"},{"journal-title":"A synthetic data generator for clustering and outlier analysis","year":"2006","author":"pei","key":"ref10"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1002\/wics.101"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.2139\/ssrn.3647625"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2020.106384"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1145\/2976749.2978318"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/MIS.2020.3010335"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/CISDA.2009.5356528"},{"journal-title":"Detection of anomalies in large scale accounting data using deep autoencoder networks","year":"2017","author":"schreyer","key":"ref19"},{"journal-title":"Detection of accounting anomalies in the latent space using adversarial autoencoder neural networks","year":"2019","author":"schreyer","key":"ref18"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1145\/3292500.3330871"},{"journal-title":"UCI Machine Learning Repository","year":"2017","author":"dua","key":"ref23"},{"key":"ref26","article-title":"Data-efficient and interpretable tabular anomaly detection","volume":"abs 2203 2034","author":"chang","year":"2022","journal-title":"CoRR"},{"journal-title":"Deep weakly-supervised anomaly detection","year":"2019","author":"pang","key":"ref25"},{"journal-title":"Explaining anomalies using denoising autoencoders for financial tabular data","year":"2022","author":"sattarov","key":"ref20"},{"journal-title":"Adam A method for stochastic optimization","year":"2014","author":"kingma","key":"ref22"},{"key":"ref21","first-page":"265","article-title":"Tensorflow: A system for large-scale machine learning","author":"abadi","year":"2016","journal-title":"12th USENIX Symposium on Operating Systems Design and Implementation ( OSDI 16)"},{"key":"ref28","first-page":"59","article-title":"Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm","author":"goldstein","year":"2012","journal-title":"KI-2012 Poster and Demo Track German Conference on Artificial Intelligence (KI-2012) 35th September 24–27 Saarbrücken Germany"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2008.17"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1145\/335191.335388"},{"journal-title":"Robust de-anonymization of large sparse datasets a decade later","year":"2019","author":"narayanan","key":"ref8"},{"key":"ref7","first-page":"111","article-title":"Robust de-anonymization of large sparse datasets","author":"narayanan","year":"0","journal-title":"Proc 29th IEEE Symp Security Privacy"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2020.3027667"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2021.116429"},{"journal-title":"Does progress on imagenet transfer to real-world datasets?","year":"2023","author":"fang","key":"ref3"},{"key":"ref6","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1561\/0400000042","article-title":"The algorithmic foundations of differential privacy","volume":"9","author":"dwork","year":"2014","journal-title":"Foundations and Trends in Theoretical Computer Science"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2015.01.001"}],"event":{"name":"2023 International Joint Conference on Neural Networks (IJCNN)","start":{"date-parts":[[2023,6,18]]},"location":"Gold Coast, Australia","end":{"date-parts":[[2023,6,23]]}},"container-title":["2023 International Joint Conference on Neural Networks (IJCNN)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/10190990\/10190992\/10191326.pdf?arnumber=10191326","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,21]],"date-time":"2023-08-21T17:46:28Z","timestamp":1692639988000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10191326\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6,18]]},"references-count":38,"URL":"https:\/\/doi.org\/10.1109\/ijcnn54540.2023.10191326","relation":{},"subject":[],"published":{"date-parts":[[2023,6,18]]}}}