{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T18:54:59Z","timestamp":1735584899085},"reference-count":35,"publisher":"IEEE","license":[{"start":{"date-parts":[[2020,7,1]],"date-time":"2020-07-01T00:00:00Z","timestamp":1593561600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,7,1]],"date-time":"2020-07-01T00:00:00Z","timestamp":1593561600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020,7]]},"DOI":"10.1109\/ijcnn48605.2020.9206991","type":"proceedings-article","created":{"date-parts":[[2020,9,30]],"date-time":"2020-09-30T00:40:33Z","timestamp":1601426433000},"source":"Crossref","is-referenced-by-count":20,"title":["Temporal Convolutional Neural Networks for Solar Power Forecasting"],"prefix":"10.1109","author":[{"given":"Yang","family":"Lin","sequence":"first","affiliation":[{"name":"University of Sydney,School of Computer Science,Sydney,Australia"}]},{"given":"Irena","family":"Koprinska","sequence":"additional","affiliation":[{"name":"University of Sydney,School of Computer Science,Sydney,Australia"}]},{"given":"Mashud","family":"Rana","sequence":"additional","affiliation":[{"name":"CSIRO,Data61,Sydney,Australia"}]}],"member":"263","reference":[{"key":"ref33","article-title":"On the difficulty of training recurrent neural networks","author":"pascanu","year":"2012"},{"key":"ref32","author":"goodfellow","year":"2016","journal-title":"Deep Learning"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/72.279181"},{"key":"ref30","article-title":"Deep residual learning for image recognition","author":"he","year":"2015"},{"key":"ref35","article-title":"Empirical evaluation of gated recurrent neural networks on sequence modeling","author":"chung","year":"2014"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1997.9.8.1735"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2017.7966018"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TIA.2012.2190816"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.energy.2015.01.066"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.solener.2015.08.018"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2015.7280574"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01418-6_52"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-30490-4_35"},{"key":"ref17","article-title":"Imagenet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Proc Adv Neural Inform Processing Syst"},{"key":"ref18","article-title":"Character-level convolutional networks for text classification","author":"zhang","year":"2015","journal-title":"Proc Adv Neural Inform Processing Syst"},{"key":"ref19","article-title":"Wavenet: A generative model for raw audio","author":"van den oord","year":"2016"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/29.21701"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2014.03.084"},{"key":"ref27","article-title":"Climate Data Online","year":"0"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.solener.2012.04.004"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.segan.2019.100286"},{"key":"ref29","article-title":"Multi-scale context aggregation by dilated convolutions","author":"yu","year":"2015"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2017.7966395"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1111\/exsy.12394"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.solener.2014.11.017"},{"key":"ref2","article-title":"Australian Energy Market Operator","year":"0","journal-title":"An introduction to Australia s national electricity market"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-36802-9_77"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.solener.2016.01.049"},{"key":"ref20","article-title":"Conditional time series forecasting with convolutional neural networks","author":"borovykh","year":"2017","journal-title":"Proceedings of the International Conference on Artificial Neural Networks (ICANN)"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2018.8489399"},{"key":"ref21","article-title":"Autoregressive convolutional neural networks for asynchronous time series","author":"binikowski","year":"2017","journal-title":"Proceedings of the Time Series Workshop at International Conference on Machine Learning (ICML)"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/W14-4012"},{"key":"ref23","article-title":"An empirical evaluation of generic convolutional and recurrent networks for sequence modeling","author":"bai","year":"2018"},{"key":"ref26","article-title":"Sanyo, 6.3kW, HIT Hybrid Silicon, Fixed, 2010","year":"0"},{"key":"ref25","article-title":"UQ Solar","year":"0"}],"event":{"name":"2020 International Joint Conference on Neural Networks (IJCNN)","location":"Glasgow, UK","start":{"date-parts":[[2020,7,19]]},"end":{"date-parts":[[2020,7,24]]}},"container-title":["2020 International Joint Conference on Neural Networks (IJCNN)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9200848\/9206590\/09206991.pdf?arnumber=9206991","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,24]],"date-time":"2024-01-24T18:37:28Z","timestamp":1706121448000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9206991\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,7]]},"references-count":35,"URL":"https:\/\/doi.org\/10.1109\/ijcnn48605.2020.9206991","relation":{},"subject":[],"published":{"date-parts":[[2020,7]]}}}