{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T02:20:16Z","timestamp":1729650016244,"version":"3.28.0"},"reference-count":31,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2014,7]]},"DOI":"10.1109\/ijcnn.2014.6889827","type":"proceedings-article","created":{"date-parts":[[2014,9,10]],"date-time":"2014-09-10T14:30:33Z","timestamp":1410359433000},"page":"2820-2825","source":"Crossref","is-referenced-by-count":6,"title":["Heuristically enhanced dynamic neural networks for structurally improving photovoltaic power forecasting"],"prefix":"10.1109","author":[{"given":"Naji","family":"Al-Messabi","sequence":"first","affiliation":[]},{"given":"Cindy","family":"Goh","sequence":"additional","affiliation":[]},{"given":"Ibrahim","family":"El-Amin","sequence":"additional","affiliation":[]},{"given":"Yun","family":"Li","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"19","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2006.878355"},{"key":"17","doi-asserted-by":"publisher","DOI":"10.1016\/j.solener.2009.05.016"},{"key":"18","doi-asserted-by":"publisher","DOI":"10.1049\/ip-epa:19990116"},{"key":"15","doi-asserted-by":"publisher","DOI":"10.1016\/S0038-092X(99)00064-X"},{"journal-title":"California Renewable Energy Forecasting Resource Data and Mapping","year":"0","author":"final report","key":"16"},{"key":"13","doi-asserted-by":"publisher","DOI":"10.1109\/72.329697"},{"journal-title":"Neural Networks A Comprehensive Foundation","year":"1999","author":"haykin","key":"14"},{"key":"11","first-page":"5839","article-title":"Feed-forward neural networks training: A comparison between genetic algorithm and backpropagation learning algorithm","volume":"7","author":"che","year":"2011","journal-title":"International Journal of Innovative Computing Information and Control"},{"key":"12","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2012.6252406"},{"key":"21","doi-asserted-by":"publisher","DOI":"10.1109\/WCPEC.1994.520096"},{"key":"20","doi-asserted-by":"publisher","DOI":"10.1109\/TPEL.2009.2013862"},{"key":"22","doi-asserted-by":"publisher","DOI":"10.1016\/S0038-092X(99)00063-8"},{"key":"23","doi-asserted-by":"publisher","DOI":"10.1109\/60.9348"},{"key":"24","doi-asserted-by":"publisher","DOI":"10.1109\/60.629709"},{"key":"25","doi-asserted-by":"crossref","first-page":"807","DOI":"10.1016\/j.solener.2010.02.006","article-title":"A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy","volume":"84","author":"mellit","year":"2010","journal-title":"Solar Energy"},{"key":"26","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2010.5596782"},{"key":"27","doi-asserted-by":"publisher","DOI":"10.1109\/ISAP.2007.4441657"},{"key":"28","doi-asserted-by":"publisher","DOI":"10.1016\/j.renene.2012.01.108"},{"key":"29","doi-asserted-by":"publisher","DOI":"10.1109\/TMTT.2009.2036334"},{"key":"3","article-title":"Renewable energy technologies: Cost analysis series, photovoltaics","volume":"1","author":"irena reference","year":"2012","journal-title":"IRENA"},{"key":"2","doi-asserted-by":"publisher","DOI":"10.1126\/science.1169616"},{"journal-title":"Outlook for Photovoltaics 2013-2017","year":"2013","author":"market","key":"1"},{"key":"10","doi-asserted-by":"crossref","first-page":"773","DOI":"10.1109\/PEDG.2010.5545754","article-title":"Forecasting power output for gridconnected photovoltaic power system without using solar radiation measurement","author":"tao","year":"2010","journal-title":"2010 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)"},{"key":"30","doi-asserted-by":"publisher","DOI":"10.1109\/59.651620"},{"key":"7","doi-asserted-by":"publisher","DOI":"10.1109\/60.124544"},{"key":"6","doi-asserted-by":"publisher","DOI":"10.1109\/TDC.2012.6281606"},{"key":"5","doi-asserted-by":"publisher","DOI":"10.1109\/ISGT-LA.2013.6554484"},{"key":"31","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1109\/CEC.2001.934374","article-title":"Particle swarm optimization: Developments, applications, and resources","volume":"1","author":"eberhat","year":"2001","journal-title":"Proceedings of the 2001 Congress on Evolutionary Computation"},{"key":"4","doi-asserted-by":"publisher","DOI":"10.1109\/TEC.2005.845454"},{"key":"9","article-title":"User requirements and research needs for renewable generation forecasting tools that will meet the need of the CAISO and utilities for 2020","author":"cibulka","year":"2012","journal-title":"CIee"},{"key":"8","doi-asserted-by":"publisher","DOI":"10.1109\/TSTE.2012.2198925"}],"event":{"name":"2014 International Joint Conference on Neural Networks (IJCNN)","start":{"date-parts":[[2014,7,6]]},"location":"Beijing, China","end":{"date-parts":[[2014,7,11]]}},"container-title":["2014 International Joint Conference on Neural Networks (IJCNN)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6880678\/6889358\/06889827.pdf?arnumber=6889827","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,10,14]],"date-time":"2020-10-14T15:12:19Z","timestamp":1602688339000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/6889827"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,7]]},"references-count":31,"URL":"https:\/\/doi.org\/10.1109\/ijcnn.2014.6889827","relation":{},"subject":[],"published":{"date-parts":[[2014,7]]}}}