{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T17:30:06Z","timestamp":1729618206755,"version":"3.28.0"},"reference-count":31,"publisher":"IEEE","license":[{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020,11,1]]},"DOI":"10.1109\/ieeeconf51394.2020.9443434","type":"proceedings-article","created":{"date-parts":[[2021,6,4]],"date-time":"2021-06-04T01:32:35Z","timestamp":1622770355000},"page":"1222-1226","source":"Crossref","is-referenced-by-count":1,"title":["Global Convergence of Newton Method for Empirical Risk Minimization in Reproducing Kernel Hilbert Space"],"prefix":"10.1109","author":[{"given":"Ting-Jui","family":"Chang","sequence":"first","affiliation":[{"name":"Texas A&M University,College Station,TX,USA,77843"}]},{"given":"Shahin","family":"Shahrampour","sequence":"additional","affiliation":[{"name":"Texas A&M University,College Station,TX,USA,77843"}]}],"member":"263","reference":[{"key":"ref31","doi-asserted-by":"crossref","DOI":"10.1609\/aaai.v32i1.11697","article-title":"On data-dependent random features for improved generalization in supervised learning","author":"shahrampour","year":"2018","journal-title":"Thirty-Second AAAI Conference on Artificial Intelligence"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1561\/2200000048"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1090\/S0025-5718-1970-0274029-X"},{"key":"ref11","first-page":"436","article-title":"A stochastic quasi-newton method for online convex optimization","author":"schraudolph","year":"2007","journal-title":"Artificial Intelligence and Statistics"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2014.2357775"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1137\/140954362"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511809682"},{"key":"ref15","first-page":"1177","article-title":"Random features for large-scale kernel machines","author":"rahimi","year":"2008","journal-title":"Advances in neural information processing systems"},{"article-title":"A random-feature based newton method for empirical risk minimization in reproducing kernel hilbert space","year":"2020","author":"chang","key":"ref16"},{"key":"ref17","first-page":"249","article-title":"A linearly-convergent stochastic l-bfgs algorithm","author":"moritz","year":"2016","journal-title":"Artificial Intelligence and Statistics"},{"key":"ref18","first-page":"1737","article-title":"Sgd-qn: Careful quasi-newton stochastic gradient descent","volume":"10","author":"bordes","year":"2009","journal-title":"Journal of Machine Learning Research"},{"key":"ref19","first-page":"604","article-title":"Fast large-scale optimization by unifying stochastic gradient and quasi-newton methods","author":"sohl-dickstein","year":"2014","journal-title":"International Conference on Machine Learning"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.129"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/s10107-018-1346-5"},{"key":"ref27","first-page":"583","article-title":"Random feature maps for dot product kernels","author":"kar","year":"2012","journal-title":"International Conference on Artificial Intelligence and Statistics"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1093\/imanum\/dry009"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1137\/15M1021106"},{"key":"ref29","first-page":"253","article-title":"Random fourier features for kernel ridge regression: Approximation bounds and statistical guarantees","author":"avron","year":"2017","journal-title":"Proceedings of the 34th International Conference on Machine Learning-Volume 70"},{"key":"ref5","first-page":"3000","article-title":"Sub-´ sampled newton methods with non-uniform sampling","author":"xu","year":"2016","journal-title":"Advances in neural information processing systems"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1093\/comjnl\/13.3.317"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1093\/imamat\/6.3.222"},{"key":"ref2","first-page":"5","article-title":"Introductory lectures on convex programming volume i: Basic course","volume":"3","author":"nesterov","year":"1998","journal-title":"Lecture notes"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1090\/S0025-5718-1970-0258249-6"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1137\/16M1080173"},{"key":"ref20","first-page":"3151","article-title":"Global convergence of online limited memory bfgs","volume":"16","author":"mokhtari","year":"2015","journal-title":"The Journal of Machine Learning Research"},{"key":"ref22","first-page":"1869","article-title":"Stochastic block bfgs:´ Squeezing more curvature out of data","author":"gower","year":"2016","journal-title":"International Conference on Machine Learning"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1137\/17M1122943"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1137\/10079923X"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2017.2784360"},{"key":"ref26","article-title":"Convergence rates of sub-sampled newton methods","author":"erdogdu","year":"2015","journal-title":"NIPS"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1007\/s10107-012-0572-5"}],"event":{"name":"2020 54th Asilomar Conference on Signals, Systems, and Computers","start":{"date-parts":[[2020,11,1]]},"location":"Pacific Grove, CA, USA","end":{"date-parts":[[2020,11,4]]}},"container-title":["2020 54th Asilomar Conference on Signals, Systems, and Computers"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9443248\/9443268\/09443434.pdf?arnumber=9443434","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,29]],"date-time":"2022-12-29T19:04:24Z","timestamp":1672340664000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9443434\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11,1]]},"references-count":31,"URL":"https:\/\/doi.org\/10.1109\/ieeeconf51394.2020.9443434","relation":{},"subject":[],"published":{"date-parts":[[2020,11,1]]}}}