{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T02:38:05Z","timestamp":1730255885919,"version":"3.28.0"},"reference-count":51,"publisher":"IEEE","license":[{"start":{"date-parts":[[2024,5,13]],"date-time":"2024-05-13T00:00:00Z","timestamp":1715558400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,5,13]],"date-time":"2024-05-13T00:00:00Z","timestamp":1715558400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/100016311","name":"Arm","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100016311","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024,5,13]]},"DOI":"10.1109\/icra57147.2024.10611287","type":"proceedings-article","created":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T17:51:05Z","timestamp":1723139465000},"page":"6642-6649","source":"Crossref","is-referenced-by-count":0,"title":["A Metacognitive Approach to Out-of-Distribution Detection for Segmentation"],"prefix":"10.1109","author":[{"given":"Meghna","family":"Gummadi","sequence":"first","affiliation":[{"name":"University of Pennsylvania,Philadelphia,PA,USA"}]},{"given":"Cassandra","family":"Kent","sequence":"additional","affiliation":[{"name":"University of Pennsylvania,Philadelphia,PA,USA"}]},{"given":"Karl","family":"Schmeckpeper","sequence":"additional","affiliation":[{"name":"University of Pennsylvania,Philadelphia,PA,USA"}]},{"given":"Eric","family":"Eaton","sequence":"additional","affiliation":[{"name":"University of Pennsylvania,Philadelphia,PA,USA"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00906"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01249"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58520-4_26"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2020.2983686"},{"key":"ref5","first-page":"384","article-title":"Identifying unknown instances for autonomous driving","volume-title":"Conference on Robot Learning","author":"Wong"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/IV48863.2021.9575433"},{"article-title":"Towards robot adaptability in new situations","volume-title":"2015 AAAI fall symposium series","author":"Boteanu","key":"ref7"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2955480"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2022.3146922"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2017.85"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.specom.2023.102957"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2012.256"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.173"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298799"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-25891-6_38"},{"key":"ref16","first-page":"1065","article-title":"Shels: Exclusive feature sets for novelty detection and continual learning without class boundaries","volume-title":"Conference on Lifelong Learning Agents","author":"Gummadi"},{"article-title":"A baseline for detecting misclassified and out-of-distribution examples in neural networks","year":"2016","author":"Hendrycks","key":"ref17"},{"article-title":"Enhancing the reliability of out-of-distribution image detection in neural networks","year":"2017","author":"Liang","key":"ref18"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00508"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.5244\/c.31.57"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1007\/3-540-45014-9_1"},{"key":"ref22","first-page":"105743","article-title":"Metacognition for artificial intelligence system safety \u2013 an approach to safe and desired behavior","volume-title":"Safety Science","volume":"151","author":"Johnson","year":"2022"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.7551\/mitpress\/8069.003.0016"},{"key":"ref24","first-page":"1321","article-title":"On calibration of modern neural networks","volume-title":"International conference on machine learning","author":"Guo"},{"article-title":"Deep anomaly detection with outlier exposure","year":"2018","author":"Hendrycks","key":"ref25"},{"article-title":"Regularizing neural networks by penalizing confident output distributions","year":"2017","author":"Pereyra","key":"ref26"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-33676-9_3"},{"article-title":"Dense outlier detection and open-set recognition based on training with noisy negative images","year":"2021","author":"Bevandi\u0107","key":"ref28"},{"article-title":"Vos: Learning what you don\u2019t know by virtual outlier synthesis","year":"2022","author":"Du","key":"ref29"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.01514"},{"key":"ref31","first-page":"8759","article-title":"Scaling out-of-distribution detection for real-world settings","volume-title":"International Conference on Machine Learning","author":"Hendrycks"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01664"},{"key":"ref33","article-title":"Simple and scalable predictive uncertainty estimation using deep ensembles","volume":"30","author":"Lakshminarayanan","year":"2017","journal-title":"Advances in neural information processing systems"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/IVS.2015.7225680"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00224"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/tpami.2023.3335152"},{"key":"ref37","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-030-69544-6_14","article-title":"Road obstacle detection method based on an autoencoder with semantic segmentation","volume-title":"Proceedings of the Asian Conference on Computer Vision","author":"Ohgushi"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.01536"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01246-5_32"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW56347.2022.00495"},{"article-title":"Mixmaxent: improving accuracy and uncertainty estimates of deterministic neural networks","year":"2021","author":"Pinto","key":"ref41"},{"article-title":"mixup: Beyond empirical risk minimization","year":"2017","author":"Zhang","key":"ref42"},{"article-title":"Regmixup: Mixup as a regularizer can surprisingly improve accuracy and out distribution robustness","year":"2022","author":"Pinto","key":"ref43"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-26409-2_32"},{"article-title":"Training confidence-calibrated classifiers for detecting out-of-distribution samples","year":"2017","author":"Lee","key":"ref45"},{"key":"ref46","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","volume-title":"Medical Image Computing and Computer-Assisted Intervention (MICCAI), ser. LNCS","volume":"9351","author":"Ronneberger","year":"2015"},{"key":"ref47","first-page":"15288","article-title":"Calibrating deep neural networks using focal loss","volume":"33","author":"Mukhoti","year":"2020","journal-title":"Advances in Neural Information Processing Systems"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01237-3_34"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.350"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2016.7759186"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-021-01511-6"}],"event":{"name":"2024 IEEE International Conference on Robotics and Automation (ICRA)","start":{"date-parts":[[2024,5,13]]},"location":"Yokohama, Japan","end":{"date-parts":[[2024,5,17]]}},"container-title":["2024 IEEE International Conference on Robotics and Automation (ICRA)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/10609961\/10609862\/10611287.pdf?arnumber=10611287","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T04:16:05Z","timestamp":1723349765000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10611287\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5,13]]},"references-count":51,"URL":"https:\/\/doi.org\/10.1109\/icra57147.2024.10611287","relation":{},"subject":[],"published":{"date-parts":[[2024,5,13]]}}}