{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T02:29:04Z","timestamp":1730255344481,"version":"3.28.0"},"reference-count":31,"publisher":"IEEE","license":[{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020,5]]},"DOI":"10.1109\/icra40945.2020.9197266","type":"proceedings-article","created":{"date-parts":[[2020,9,15]],"date-time":"2020-09-15T17:25:46Z","timestamp":1600190746000},"page":"5716-5723","source":"Crossref","is-referenced-by-count":13,"title":["UNO: Uncertainty-aware Noisy-Or Multimodal Fusion for Unanticipated Input Degradation"],"prefix":"10.1109","author":[{"given":"Junjiao","family":"Tian","sequence":"first","affiliation":[]},{"given":"Wesley","family":"Cheung","sequence":"additional","affiliation":[]},{"given":"Nathaniel","family":"Glaser","sequence":"additional","affiliation":[]},{"given":"Yen-Cheng","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Zsolt","family":"Kira","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00631"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2017.7989540"},{"key":"ref10","article-title":"Deep Residual Learning for Image Recognition","author":"he","year":"2015","journal-title":"ArXiv e-prints"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/B978-1-55860-332-5.50041-9"},{"key":"ref12","article-title":"Benchmarking Neural Network Robustness to Common Corruptions and Perturbations","author":"hendrycks","year":"0","journal-title":"arXiv e-prints arXiv 1903 12261 (Mar 2019) arXiv 1903 12261 arXiv 1903 12261 [cs LG]"},{"key":"ref13","first-page":"161","article-title":"Some Practical Issues in Constructing Belief Networks","volume":"3","author":"henrion","year":"1987","journal-title":"UAI"},{"key":"ref14","article-title":"Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding","author":"kendall","year":"2015","journal-title":"arXiv preprint arXiv 1511 05271"},{"key":"ref15","first-page":"5574","article-title":"What uncertainties do we need in bayesian deep learning for computer vision?","author":"kendall","year":"2017","journal-title":"Advances in neural information processing systems"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-20870-7_6"},{"key":"ref17","article-title":"On Single Source Robustness in Deep Fusion Models","author":"kim","year":"2019","journal-title":"ArXiv e-prints"},{"key":"ref18","article-title":"Adam: A Method for Stochastic Optimization","author":"kingma","year":"0","journal-title":"arXiv e-prints arXiv 1412 6980 (Dec 2014) arXiv 1412 6980 arXiv 1412 6980 [cs LG]"},{"key":"ref19","article-title":"Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks","author":"liang","year":"2017","journal-title":"ArXiv e-prints"},{"key":"ref28","article-title":"Very deep convolutional networks for large-scale image recognition","author":"simonyan","year":"2014","journal-title":"arXiv preprint arXiv 1409 1556"},{"key":"ref4","article-title":"Density estimation using Real NVP","author":"dinh","year":"0","journal-title":"arXiv e-prints arXiv 1605 08803 (May 2016) arXiv 1605 08803 arXiv 1605 08803 [cs LG]"},{"key":"ref27","article-title":"AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles","author":"shah","year":"0","journal-title":"Field and Service Robotics 2017 eprint arXiv 1705 05065"},{"key":"ref3","article-title":"Learning Confidence for Out-of-Distribution Detection in Neural Networks","author":"devries","year":"0","journal-title":"arXiv e-prints arXiv 1802 04865 (Feb 2018) arXiv 1802 04865 arXiv 1802 04865 [stat ML]"},{"key":"ref6","article-title":"Uncertainty in deep learning","author":"gal","year":"2016","journal-title":"PhD thesis Ph D thesis"},{"key":"ref29","article-title":"Self-Supervised Model Adaptation for Multi-modal Semantic Segmentation","author":"valada","year":"0","journal-title":"arXiv e-prints arXiv 1808 03833 (Aug 2018) arXiv 1808 03833 arXiv 1808 03833 [cs CV]"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2015.7353446"},{"key":"ref8","first-page":"1321","article-title":"On calibration of modern neural networks","author":"guo","year":"2017","journal-title":"Proceedings of the 34th International Conference on Machine Learning-Volume 70"},{"key":"ref7","article-title":"Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning","author":"gal","year":"2015","journal-title":"ArXiv e-prints"},{"key":"ref2","article-title":"RFBNet: Deep Multimodal Networks with Residual Fusion Blocks for RGB-D Semantic Segmentation","author":"deng","year":"2019","journal-title":"arXiv preprint arXiv 1907 09977"},{"key":"ref9","article-title":"FuseNet: incorporating depth into semantic segmentation via fusion-based CNN architecture","author":"hazirbas","year":"2016","journal-title":"Asian Conference on Computer Vision"},{"key":"ref1","article-title":"The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation","author":"blum","year":"2019","journal-title":"ArXiv e-prints"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"ref22","article-title":"Evaluating Bayesian Deep Learning Methods for Semantic Segmentation","author":"mukhoti","year":"0","journal-title":"arXiv e-prints arXiv 1811 12709 (Nov 2018) arXiv 1811 12709 arXiv 1811 12709 [cs CV]"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2016.7759048"},{"journal-title":"Probabilistic Reasoning in Intelligent Systems Networks of Plausible Inference","year":"2014","author":"pearl","key":"ref24"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/MMSP.2007.4412868"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2016.7487370"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2017.2738401"}],"event":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","start":{"date-parts":[[2020,5,31]]},"location":"Paris, France","end":{"date-parts":[[2020,8,31]]}},"container-title":["2020 IEEE International Conference on Robotics and Automation (ICRA)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9187508\/9196508\/09197266.pdf?arnumber=9197266","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,27]],"date-time":"2022-06-27T20:11:27Z","timestamp":1656360687000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9197266\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5]]},"references-count":31,"URL":"https:\/\/doi.org\/10.1109\/icra40945.2020.9197266","relation":{},"subject":[],"published":{"date-parts":[[2020,5]]}}}